【題目】如圖,在四棱錐P﹣ABCD中,底面是邊長為 的菱形,∠BAD=120°,且PA⊥平面ABCD,PA=2 ,M,N分別為PB,PD的中點.
(1)證明:MN∥平面ABCD;
(2)過點A作AQ⊥PC,垂足為點Q,求二面角A﹣MN﹣Q的平面角的余弦值.
【答案】
(1)證明:連接BD.∵M,N分別為PB,PD的中點,
∴在△PBD中,MN∥BD.
又MN平面ABCD,BD平面ABCD
∴MN∥平面ABCD
(2)方法一:連接AC交BD于O,以O為原點,OC,OD所在直線為x,y軸,建立空間直角坐標系,在菱形ABCD中,∠BAD=120°
,得AC=AB= ,BD=
∵PA⊥平面ABCD,∴PA⊥AC
在直角△PAC中, ,AQ⊥PC得QC=2,PQ=4,由此知各點坐標如下
A(﹣ ,0,0),B(0,﹣3,0),C( ,0,0),D(0,3,0),P( ),M( ),N( )
Q( )
設 =(x,y,z)為平面AMN的法向量,則 .
∴ ,取z=﹣1, ,
同理平面QMN的法向量為
∴ =
∴所求二面角A﹣MN﹣Q的平面角的余弦值為 .
方法二:在菱形ABCD中,∠BAD=120°,得AC=AB=BC=CD=DA= ,BD=
∵PA⊥平面ABCD,∴PA⊥AB,PA⊥AC,PA⊥AD,∴PB=PC=PD,∴△PBC≌△PDC
而M,N分別是PB,PD的中點,∴MQ=NQ,且AM= PB= =AN
取MN的中點E,連接AE,EQ,則AE⊥MN,QE⊥MN,所以∠AEQ為二面角A﹣MN﹣Q的平面角
由 ,AM=AN=3,MN=3可得AE=
在直角△PAC中,AQ⊥PC得QC=2,PQ=4,AQ=2
在△PBC中,cos∠BPC=
在等腰△MQN中,MQ=NQ= .MN=3,∴QE=
在△AED中,AE= ,QE= ,AQ=2 ,∴cos∠AEQ=
∴所求二面角A﹣MN﹣Q的平面角的余弦值為 .
【解析】(1)連接BD,利用三角形的中位線的性質,證明MN∥BD,再利用線面平行的判定定理,可知MN∥平面ABCD;(2)方法一:連接AC交BD于O,以O為原點,OC,OD所在直線為x,y軸,建立空間直角坐標系,求出平面AMN的法向量 ,利用向量的夾角公式,即可求得二面角A﹣MN﹣Q的平面角的余弦值;
方法二:證明∠AEQ為二面角A﹣MN﹣Q的平面角,在△AED中,求得AE= ,QE= ,AQ=2 ,再利用余弦定理,即可求得二面角A﹣MN﹣Q的平面角的余弦值.
【考點精析】本題主要考查了直線與平面平行的判定的相關知識點,需要掌握平面外一條直線與此平面內的一條直線平行,則該直線與此平面平行;簡記為:線線平行,則線面平行才能正確解答此題.
科目:高中數學 來源: 題型:
【題目】如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,,∠ABC=∠BCD=90°,E為PB的中點。
(1)證明:CE∥面PAD.
(2)若直線CE與底面ABCD所成的角為45°,求四棱錐P-ABCD的體積。
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】等比數列{an}的各項均為正數,且2a1+3a2=1, =9a2a6.
(1)求數列{an}的通項公式;
(2)設bn=log3a1+log3a2+…+log3an,求數列的前n項和.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】為調查某地區(qū)老年人是否需要志愿者提供幫助,用簡單隨機抽樣方法從該地區(qū)調查了500位老人,結果如下:
(Ⅰ)估計該地區(qū)老年人中,需要志愿提供幫助的老年人的比例;
(Ⅱ)能否有99℅的把握認為該地區(qū)的老年人是否需要志愿者提供幫助與性別有關?
(Ⅲ)根據(Ⅱ)的結論,能否提出更好的調查辦法來估計該地區(qū)的老年人中,需要志愿者提供幫助的老年人的比例?說明理由。
是否需要志愿者 性別 | 男 | 女 |
需要 | 40 | 30 |
不需要 | 160 | 270 |
參考數據:
| 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某公司在甲、乙兩地同時銷售一種品牌車,利潤(單位:萬元)分別為L1=-x2+21x和L2=2x,其中銷售量為x(單位:輛).若該公司在兩地共銷售15輛,則能獲得的最大利潤為()
A. 90萬元B. 120萬元
C. 120.25萬元D. 60萬元
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】某地區(qū)有小學150所,中學75所,大學25所.先采用分層抽樣的方法從這些學校中抽取30所學校對學生進行視力調查,應從小學中抽取 18 所學校,中學中抽取所學校.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】一項拋擲骰子的過關游戲規(guī)定:在第關要拋擲一顆骰子次,如里這次拋擲所出現的點數和大于,則算過關,可以隨意挑戰(zhàn)某一關.若直接挑戰(zhàn)第三關,則通關的概率為______;若直接挑戰(zhàn)第四關,則通關的慨率為______.
查看答案和解析>>
科目:高中數學 來源: 題型:
【題目】如圖,橢圓經過點,且點到橢圓的兩焦點的距離之和為.
(1)求橢圓的標準方程;
(2)若是橢圓上的兩個點,線段的中垂線的斜率為且直線與交于點,為坐標原點,求證:三點共線.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com