設(shè)命題:實數(shù)滿足,其中;命題:實數(shù)滿足的必要不充分條件,求實數(shù)的取值范圍.

解析試題分析:先把命題、中實數(shù)滿足的不等式分別表示為集合、,再由的必要不充分條件,得必要不充分條件,即可得兩個集合的關(guān)系,從而解得的取值范圍.
試題解析:設(shè)
.            5分
的必要不充分條件,必要不充分條件,,        8分
所以,又,所以實數(shù)的取值范圍是.       12分
考點:1、一元二次不等式的解法;2、充要條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知命題p:方程x2+mx+1=0有兩個不相等的實根;q:不等式4x2+4(m–2)x+1>0的解集為R;若p或q為真,p且q為假,求實數(shù)m的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

設(shè):“”,:“函數(shù)上的值域為”,若“”是假命題,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知集合,,,并且的充分條件,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知,設(shè)命題:函數(shù)在區(qū)間上與軸有兩個不同的交點;命題在區(qū)間上有最小值.若是真命題,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

已知p:|x-3|≤2,q:(x-m+1)(x-m-1)≤0,若的充分而不必要條件,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

給定兩個命題,
:對任意實數(shù)都有恒成立;:關(guān)于的方程有實數(shù)根;如果“”為假,且“”為真,求實數(shù)的取值范圍。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(本題滿分16分) 本題共有3個小題,第1小題滿分7分,第2小題滿分7分,第3小題滿分2分. 
設(shè)直線交橢圓兩點,交直線于點
(1)若的中點,求證:;
(2)寫出上述命題的逆命題并證明此逆命題為真;
(3)請你類比橢圓中(1)、(2)的結(jié)論,寫出雙曲線中類似性質(zhì)的結(jié)論(不必證明).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

(12分)已知命題若非的充分不必要條件,求的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案