【題目】已知橢圓與雙曲線有公共的焦點(diǎn),的一條漸近線與以的長(zhǎng)軸為直徑的圓相交于兩點(diǎn),若恰好將線段三等分,則

A.B.C.D.

【答案】B

【解析】

先由雙曲線方程確定一條漸近線方程為y=2x,根據(jù)對(duì)稱性易知AB為圓的直徑且AB=2a,利用橢圓與雙曲線有公共的焦點(diǎn),得方程a2-b2=5;設(shè)C1y=2x在第一象限的交點(diǎn)的坐標(biāo),代入C1的方程得;由對(duì)稱性求得直線y=2xC1截得的弦長(zhǎng),根據(jù)C1恰好將線段AB三等分得出a2b2的值,故可得結(jié)論.

由題意, C2的焦點(diǎn)為,一條漸近線方程為y=2x,根據(jù)對(duì)稱性易知AB為圓的直徑且AB=2a

C1的半焦距,于是得

設(shè)C1y=2x在第一象限的交點(diǎn)的坐標(biāo)為(m,2m),代入C1的方程得:,

由對(duì)稱性知直線y=2xC1截得的弦長(zhǎng),

由題得:,所以

②③

①④

故選C

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù).

(I)求曲線在點(diǎn)處的切線方程;

(Ⅱ)當(dāng)時(shí),求證:函數(shù)存在極小值;

(Ⅲ)請(qǐng)直接寫出函數(shù)的零點(diǎn)個(gè)數(shù).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD為正方形,,且,平面BCE.

1)證明:平面平面BDFE

2)求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,直角梯形中,,,,四邊形為矩形,.

1)求證:平面平面;

2)在線段上是否存在點(diǎn),使得直線與平面所成角的正弦值為,若存在,求出線段的長(zhǎng),若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在以為頂點(diǎn),母線長(zhǎng)為的圓錐中,底面圓的直徑長(zhǎng)為2,是圓所在平面內(nèi)一點(diǎn),且是圓的切線,連接交圓于點(diǎn),連接,.

1)求證:平面平面

2)若的中點(diǎn),連接,當(dāng)二面角的大小為時(shí),求平面與平面所成銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某地種植常規(guī)稻和雜交稻,常規(guī)稻的畝產(chǎn)穩(wěn)定為485公斤,今年單價(jià)為3.70/公斤,估計(jì)明年單價(jià)不變的可能性為,變?yōu)?/span>3.90/公斤的可能性為,變?yōu)?/span>4.00的可能性為.統(tǒng)計(jì)雜交稻的畝產(chǎn)數(shù)據(jù),得到畝產(chǎn)的頻率分布直方圖如圖①.統(tǒng)計(jì)近10年雜交稻的單價(jià)(單位:元/公斤)與種植畝數(shù)(單位:萬畝)的關(guān)系,得到的10組數(shù)據(jù)記為,并得到散點(diǎn)圖如圖②.

1)根據(jù)以上數(shù)據(jù)估計(jì)明年常規(guī)稻的單價(jià)平均值;

2)在頻率分布直方圖中,各組的取值按中間值來計(jì)算,求雜交稻的畝產(chǎn)平均值;以頻率作為概率,預(yù)計(jì)將來三年中至少有二年,雜交稻的畝產(chǎn)超過795公斤的概率;

3判斷雜交稻的單價(jià)(單位:元/公斤)與種植畝數(shù)(單位:萬畝)是否線性相關(guān)?若相關(guān),試根據(jù)以下的參考數(shù)據(jù)求出關(guān)于的線性回歸方程;

調(diào)查得知明年此地雜交稻的種植畝數(shù)預(yù)計(jì)為2萬畝.若在常規(guī)稻和雜交稻中選擇,明年種植哪種水稻收入更高?

統(tǒng)計(jì)參考數(shù)據(jù):,,,,

附:線性回歸方程,.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司計(jì)劃購(gòu)買1臺(tái)機(jī)器,該種機(jī)器使用三年后即被淘汰.在購(gòu)進(jìn)機(jī)器時(shí),可以一次性額外購(gòu)買次維修,每次維修費(fèi)用300元,另外實(shí)際維修一次還需向維修人員支付上門服務(wù)費(fèi)80元.在機(jī)器使用期間,如果維修次數(shù)超過購(gòu)買的次時(shí),則超出的維修次數(shù),每次只需支付維修費(fèi)用700元,無需支付上門服務(wù)費(fèi).需決策在購(gòu)買機(jī)器時(shí)應(yīng)同時(shí)一次性購(gòu)買幾次維修,為此搜集并整理了100臺(tái)這種機(jī)器在三年使用期內(nèi)的維修次數(shù),得到下面統(tǒng)計(jì)表:

維修次數(shù)

6

7

8

9

10

頻數(shù)

10

20

30

30

10

表示1臺(tái)機(jī)器在三年使用期內(nèi)的維修次數(shù),表示1臺(tái)機(jī)器維修所需的總費(fèi)用(單位:元).

(1)若,求的函數(shù)解析式;

(2)假設(shè)這100臺(tái)機(jī)器在購(gòu)機(jī)的同時(shí)每臺(tái)都購(gòu)買8次維修,或每臺(tái)都購(gòu)買9次維修,分別計(jì)算這100臺(tái)機(jī)器在維修上所需總費(fèi)用的平均數(shù),并以此作為決策依據(jù),購(gòu)買1臺(tái)機(jī)器的同時(shí)應(yīng)購(gòu)買8次還是9次維修?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某貧困地區(qū)扶貧辦積極貫徹落實(shí)國(guó)家精準(zhǔn)扶貧的政策要求,帶領(lǐng)廣大農(nóng)村地區(qū)人民群眾脫貧奔小康.經(jīng)過不懈的奮力拼搏,新農(nóng)村建設(shè)取得巨大進(jìn)步,農(nóng)民年收入也逐年增加,為了更好的制定2019年關(guān)于加快提升農(nóng)民年收入力爭(zhēng)早日脫貧的工作計(jì)劃,該地扶貧辦隨機(jī)統(tǒng)計(jì)了2018年50位農(nóng)民的年收入并制成如下頻率分布直方圖:

(Ⅰ)根據(jù)頻率分布直方圖,估計(jì)50位農(nóng)民的年平均收入(單位:千元)(同一組數(shù)據(jù)用該組數(shù)據(jù)區(qū)間的中點(diǎn)值表示);

(Ⅱ)由頻率分布直方圖可認(rèn)為該貧困地區(qū)農(nóng)民年收入服從正態(tài)分布,其中近似為年平均收入,近似為樣本方差,經(jīng)計(jì)算得.利用該正態(tài)分布,求:

(i)在2018年脫貧攻堅(jiān)工作中,該地區(qū)約有的農(nóng)民的年收入高于扶貧辦制定的最低年收入標(biāo)準(zhǔn),則最低年收入大約為多少千元?

(ii)為了調(diào)研“精準(zhǔn)扶貧,不落一人”的政策要求落實(shí)情況,扶貧辦隨機(jī)走訪了1000位農(nóng)民.若每個(gè)農(nóng)民的年收入相互獨(dú)立,問:這1000位農(nóng)民中的年收入不少于12.14千元的人數(shù)約為多少?

參考數(shù)據(jù):.若,則;;.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為慶祝黨的98歲生日,某高校組織了“歌頌祖國(guó),緊跟黨走”為主題的黨史知識(shí)競(jìng)賽。從參加競(jìng)賽的學(xué)生中,隨機(jī)抽取40名學(xué)生,將其成績(jī)分為六段,,,,到如圖所示的頻率分布直方圖.

1)求圖中的值及樣本的中位數(shù)與眾數(shù);

2)若從競(jìng)賽成績(jī)?cè)?/span>兩個(gè)分?jǐn)?shù)段的學(xué)生中隨機(jī)選取兩名學(xué)生,設(shè)這兩名學(xué)生的競(jìng)賽成績(jī)之差的絕對(duì)值不大于分為事件,求事件發(fā)生的概率.

查看答案和解析>>

同步練習(xí)冊(cè)答案