精英家教網(wǎng)某居民小區(qū)內(nèi)建有一塊矩形草坪ABCD,AB=50米,BC=25
3
米,為了便于居民平時休閑散步,該小區(qū)物業(yè)管理公司將在這塊草坪內(nèi)鋪設(shè)三條小路OE、EF和OF,考慮到小區(qū)整體規(guī)劃,要求O是AB的中點(diǎn),點(diǎn)E在邊BC上,點(diǎn)F在邊AD上,且∠EOF=90°,如圖所示.
(1)設(shè)∠BOE=α,試將△OEF的周長l表示成α的函數(shù)關(guān)系式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條路每米鋪設(shè)費(fèi)用均為400元,試問如何設(shè)計(jì)才能使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.
分析:(1)要將△OEF的周長l表示成α的函數(shù)關(guān)系式,需把△OEF的三邊分別用含有α的關(guān)系式來表示,而OE,
OF,分別可以在Rt△OBE,Rt△OAF中求解,利用勾股定理可求EF,從而可求.
(2)要求鋪路總費(fèi)用最低,只要求△OEF的周長l的最小值即可.由(1)得,l=
25(sinα+cosα+1)
cosαsinα
,α∈[
π
6
,
π
3
]

利用換元,設(shè)sinα+cosα=t,則sinα•cosα=
t2-1
2
,從而轉(zhuǎn)化為求函數(shù)在閉區(qū)間上的最小值.
解答:解:(1)∵在Rt△BOE中,OB=25,∠B=90°,∠BOE=α,
∴OE=
25
cosα

在Rt△AOF中,OA=25,∠A=90°,∠AFO=α,
∴OF=
25
sinα

又∠EOF=90°,
∴EF═
OE2+OF2
=
(
25
cosα
)
2
+(
25
sinα
)
2
=
25
cosαsinα
,
l=OE+OF+EF=
25
cosα
+
25
sinα
+
25
cosαsinα

l=
25(sinα+cosα+1)
cosαsinα

當(dāng)點(diǎn)F在點(diǎn)D時,這時角α最小,求得此時α=
π
6

當(dāng)點(diǎn)E在C點(diǎn)時,這時角α最大,求得此時α=
π
3

故此函數(shù)的定義域?yàn)?span id="osgtxaw" class="MathJye" mathtag="math" style="whiteSpace:nowrap;wordSpacing:normal;wordWrap:normal">[
π
6
,
π
3
]
(2)由題意知,要求鋪路總費(fèi)用最低,只要求△OEF的周長l的最小值即可.
由(1)得,l=
25(sinα+cosα+1)
cosαsinα
,α∈[
π
6
π
3
]

設(shè)sinα+cosα=t,則sinα•cosα=
t2-1
2

l=
25(sinα+cosα+1)
cosαsinα
=
25(t+1)
t2-1
2
=
50
t-1

由t=sinα+cosα=
2
sin(α+
π
4
)
,又
12
≤α+
π
4
12
,得
3
+1
2
≤t≤
2
,
3
-1
2
≤t-1≤
2
-1
,
從而
2
+1≤
1
t-1
3
+1
,當(dāng)α=
π
4
,即BE=25時,lmin=50(
2
+1)
,
所以當(dāng)BE=AF=25米時,鋪路總費(fèi)用最低,最低總費(fèi)用為20000(
2
+1)
元.
點(diǎn)評:本題主要考查了借助于三角函數(shù)解三角形在實(shí)際問題中的應(yīng)用,考查了利用數(shù)學(xué)知識解決實(shí)際問題的能力,及推理運(yùn)算的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:2010-2011學(xué)年浙江省溫州市十校聯(lián)合體高一(下)期中數(shù)學(xué)試卷(解析版) 題型:解答題

某居民小區(qū)內(nèi)建有一塊矩形草坪ABCD,AB=50米,BC=米,為了便于居民平時休閑散步,該小區(qū)物業(yè)管理公司將在這塊草坪內(nèi)鋪設(shè)三條小路OE、EF和OF,考慮到小區(qū)整體規(guī)劃,要求O是AB的中點(diǎn),點(diǎn)E在邊BC上,點(diǎn)F在邊AD上,且∠EOF=90°,如圖所示.
(1)設(shè)∠BOE=α,試將△OEF的周長l表示成α的函數(shù)關(guān)系式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條路每米鋪設(shè)費(fèi)用均為400元,試問如何設(shè)計(jì)才能使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2011年江蘇省連云港市贛榆高級中學(xué)高一(下)綜合練習(xí)數(shù)學(xué)試卷(解析版) 題型:解答題

某居民小區(qū)內(nèi)建有一塊矩形草坪ABCD,AB=50米,BC=米,為了便于居民平時休閑散步,該小區(qū)物業(yè)管理公司將在這塊草坪內(nèi)鋪設(shè)三條小路OE、EF和OF,考慮到小區(qū)整體規(guī)劃,要求O是AB的中點(diǎn),點(diǎn)E在邊BC上,點(diǎn)F在邊AD上,且∠EOF=90°,如圖所示.
(1)設(shè)∠BOE=α,試將△OEF的周長l表示成α的函數(shù)關(guān)系式,并求出此函數(shù)的定義域;
(2)經(jīng)核算,三條路每米鋪設(shè)費(fèi)用均為400元,試問如何設(shè)計(jì)才能使鋪路的總費(fèi)用最低?并求出最低總費(fèi)用.

查看答案和解析>>

同步練習(xí)冊答案