設(shè)函數(shù)f(x)=|x-a|-ax,其中0<a<1為常數(shù)
(1)解不等式f(x)<0;
(2)試推斷函數(shù)f(x)是否存在最小值?若存在,求出其最小值;若不存在,說明理由.
分析:(1)把f(x)的解析式代入到f(x)<0得到一個(gè)不等式,當(dāng)x小于等于0時(shí)得到不等式不成立;當(dāng)x大于0時(shí),對(duì)不等式的兩邊分別平方,移項(xiàng)后利用平方差公式分解因式,根據(jù)a大于0小于1 求出不等式的解集即可.
(2)函數(shù)可變?yōu)閒(x)=
(1-a)x-a當(dāng)x≥a時(shí)
-(1+a)x+a當(dāng)x<a時(shí)
,根據(jù)a的范圍,運(yùn)用函數(shù)的單調(diào)性,得出答案.
解答:解:(1)不等式即為|x-a|<ax,0<a<1,若x≤0,則ax≤0,故不等式不成立;
若x>0,不等式化為(x-a)2<a2x2,即[(1+a)x-a][(1-a)x-a]<0,
由0<a<1可得,
a
1+a
<x<
a
1-a
,故不等式解集為{x|
a
1+a
<x<
a
1-a
}.
(2)由條件得:f(x)=
(1-a)x-a當(dāng)x≥a時(shí)
-(1+a)x+a當(dāng)x<a時(shí)

∵1>a>0,
∴-(1+a)<0,1-a>0,故函數(shù)f(x)在(-∞,a)上是減函數(shù),且在[a,+∞)上是增函數(shù).
故當(dāng) x=a 時(shí),f(x)存在最小值f(a).
點(diǎn)評(píng):此題考查了其他不等式的解法,分類討論的數(shù)學(xué)思想,本題還考查函數(shù)的最值及其幾何意義,解不等式,分類討論的思想,注意根據(jù)函數(shù)的形式判斷出函數(shù)中參數(shù)的取值范圍,是一道綜合題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)的定義域?yàn)锳,若存在非零實(shí)數(shù)t,使得對(duì)于任意x∈C(C⊆A),有x+t∈A,且f(x+t)≤f(x),則稱f(x)為C上的t低調(diào)函數(shù).如果定義域?yàn)閇0,+∞)的函數(shù)f(x)=-|x-m2|+m2,且 f(x)為[0,+∞)上的10低調(diào)函數(shù),那么實(shí)數(shù)m的取值范圍是( 。
A、[-5,5]
B、[-
5
5
]
C、[-
10
,
10
]
D、[-
5
2
,
5
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2012•深圳一模)已知函數(shù)f(x)=
1
3
x3+bx2+cx+d
,設(shè)曲線y=f(x)在與x軸交點(diǎn)處的切線為y=4x-12,f′(x)為f(x)的導(dǎo)函數(shù),且滿足f′(2-x)=f′(x).
(1)求f(x);
(2)設(shè)g(x)=x
f′(x)
 , m>0
,求函數(shù)g(x)在[0,m]上的最大值;
(3)設(shè)h(x)=lnf′(x),若對(duì)一切x∈[0,1],不等式h(x+1-t)<h(2x+2)恒成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)函數(shù)f(x)是定義在R上的偶函數(shù),且f(x+2)=f(x)恒成立;當(dāng)x∈[0,1]時(shí),f(x)=x3-4x+3.有下列命題:
f(-
3
4
) <f(
15
2
)
;
②當(dāng)x∈[-1,0]時(shí)f(x)=x3+4x+3;
③f(x)(x≥0)的圖象與x軸的交點(diǎn)的橫坐標(biāo)由小到大構(gòu)成一個(gè)無窮等差數(shù)列;
④關(guān)于x的方程f(x)=|x|在x∈[-3,4]上有7個(gè)不同的根.
其中真命題的個(gè)數(shù)為(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:徐州模擬 題型:解答題

設(shè)函數(shù)f(x)=a2x2(a>0),g(x)=blnx.
(1)若函數(shù)y=f(x)圖象上的點(diǎn)到直線x-y-3=0距離的最小值為2
2
,求a的值;
(2)關(guān)于x的不等式(x-1)2>f(x)的解集中的整數(shù)恰有3個(gè),求實(shí)數(shù)a的取值范圍;
(3)對(duì)于函數(shù)f(x)與g(x)定義域上的任意實(shí)數(shù)x,若存在常數(shù)k,m,使得f(x)≥kx+m和g(x)≤kx+m都成立,則稱直線y=kx+m為函數(shù)f(x)與g(x)的“分界線”.設(shè)a=
2
2
,b=e,試探究f(x)與g(x)是否存在“分界線”?若存在,求出“分界線”的方程;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案