【題目】在△ABC中,已知AB=2,AC=3,BC=.
(1)求角A的大小;
(2)求cos(B﹣C)的值.
【答案】(1)(2)
【解析】
(1)利用余弦定理求得的值,由此求得的大小.(2)利用正弦定理求得的值,利用同角三角函數(shù)的基本關(guān)系式求得的值,利用二倍角公式求得的值,再利用兩角差的余弦公式求得的值.
解:
(1)由余弦定理得:cosA===,
因為A∈(0,π),所以A=.
(2)由正弦定理得:=,所以sin C===.
又因為AB<BC,所以C<A
即0<C<,所以cosC===.
所以sin2C=2 sinC cosC=2··=,
cos2C=2cos2C-1=2()2-1=.
因為A+B+C=π,A=.所以B+C=,所以B=-C,
所以cos(B-C)=cos(-2C)=coscos2C+sinsin2C=(-)·+·=.
科目:高中數(shù)學 來源: 題型:
【題目】已知拋物線,為其焦點,拋物線的準線交軸于點T,直線l交拋物線于A,B兩點。
(1)若O為坐標原點,直線l過拋物線焦點,且,求△AOB的面積;
(2)當直線l與坐標軸不垂直時,若點B關(guān)于x軸的對稱點在直線AT上,證明直線l過定點,并求出該定點的坐標。
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知曲線的一個最高點為,與點相鄰一個最低點為,直線與軸的交點為.
(1)求函數(shù)的解析式;
(2)求函數(shù)的單調(diào)增區(qū)間;
(3)若時,函數(shù)恰有一個零點,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系xOy中,橢圓E:的離心率為,點A(2,1)是橢圓E上的點.
(1)求橢圓E的方程;
(2)過點A作兩條互相垂直的直線l1,l2分別與橢圓E交于B,C兩點,己知△ABC的面積為,求直線BC的方程.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知,都是各項為正數(shù)的數(shù)列,且,.對任意的正整數(shù)n,都有,,成等差數(shù)列,,,成等比數(shù)列.
(1)求數(shù)列和的通項公式;
(2)若存在p>0,使得集合M=恰有一個元素,求實數(shù)的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,已知以C為圓心的圓及其上一點.
(1)設(shè)平行于的直線與圓C相交于兩點,且,求直線的方程;
(2)設(shè)點滿足:存在圓C上的兩點使得,求實數(shù)t的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】據(jù)調(diào)查,某地區(qū)有300萬從事傳統(tǒng)農(nóng)業(yè)的農(nóng)民,人均年收入6000元,為了增加農(nóng)民的收入,當?shù)卣e極引進資本,建立各種加工企業(yè),對當?shù)氐霓r(nóng)產(chǎn)品進行深加工,同時吸收當?shù)夭糠洲r(nóng)民進入加工企業(yè)工作,據(jù)估計,如果有萬人進企業(yè)工作,那么剩下從事傳統(tǒng)農(nóng)業(yè)的農(nóng)民的人均年收入有望提高,而進入企業(yè)工作的農(nóng)民的人均年收入為元.
(1)在建立加工企業(yè)后,多少農(nóng)民進入企業(yè)工作,能夠使剩下從事傳統(tǒng)農(nóng)業(yè)農(nóng)民的總收入最大,并求出最大值;
(2)為了保證傳統(tǒng)農(nóng)業(yè)的順利進行,限制農(nóng)民加入加工企業(yè)的人數(shù)不能超過總?cè)藬?shù)的,當?shù)卣绾我龑мr(nóng)民,即取何值時,能使300萬農(nóng)民的年總收入最大.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知點O是銳角△ABC的外心,a,b,c分別為內(nèi)角A、B、C的對邊,A= ,且,則λ的值為( 。
A. B. ﹣ C. D. ﹣
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】從某學校高三年級共800名男生中隨機抽取50名學生作為樣本測量身高.測量發(fā)現(xiàn)被測學生身高全部介于155cm和195cm之間,將測量結(jié)果按如下方式分成八組:第一組;第二組;…;第八組.下圖是按上述分組方法得到的頻率分布直方圖的一部分.已知第一組與第八組人數(shù)相同,第六組與第八組人數(shù)之和為第七組的兩倍.
(1)估計這所學校高三年級全體男生身高在180cm以上(含180cm)的人數(shù);
(2)求第六組和第七組的頻率并補充完整頻率分布直方圖.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com