下列說(shuō)法正確的是   
(1)從勻速傳遞的產(chǎn)品生產(chǎn)流水線上,質(zhì)檢人員每20分鐘從中抽取一件產(chǎn)品進(jìn)行檢測(cè),這樣的抽樣方法為分層抽樣;
(2)兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),相關(guān)系數(shù)r的絕對(duì)值越接近1,若r=1或r=-1時(shí),則x與y的關(guān)系完全對(duì)應(yīng)(即有函數(shù)關(guān)系),在散點(diǎn)圖上各個(gè)散點(diǎn)均在一條直線上;
(3)在殘差圖中,殘差點(diǎn)分布的帶狀區(qū)域的寬度越狹窄,其模型擬合的精度越高;
(4)對(duì)于回歸直線方程,當(dāng)x每增加一個(gè)單位時(shí),平均增加12個(gè)單位;
(5)已知隨機(jī)變量X服從正態(tài)分布N(1,σ2),若P(x≤2)=0.72,則P(x≤0)=0.28.
【答案】分析:依據(jù)統(tǒng)計(jì)中相關(guān)的定義與結(jié)論,不難得到正確結(jié)論.
解答:解:(1)此種抽樣方法應(yīng)為系統(tǒng)抽樣,故(1)為假命題;
(2)由相關(guān)系數(shù)的定義得到兩個(gè)隨機(jī)變量相關(guān)性越強(qiáng),相關(guān)系數(shù)r的絕對(duì)值越接近1,
但若r=1或r=-1時(shí),則x與y的關(guān)系即是一次函數(shù)關(guān)系,故(2)為真命題;
(3)顯然正確;
(4)由于對(duì)于回歸直線方程,當(dāng)x每增加一個(gè)單位時(shí),y平均增加0.2個(gè)單位,故(4)為假命題;
(5)由于隨機(jī)變量X服從正態(tài)分布N(1,σ2),則x=1左右兩側(cè)的概率均為0.5,
又由P(x≤2)=0.72,則P(x≤0)=P(x≥2)=1-0.72=0.28,故(5)為真命題.
故答案為(2)(3)(5).
點(diǎn)評(píng):本題考查的知識(shí)點(diǎn)是,判斷命題真假,比較綜合的考查了統(tǒng)計(jì)中的有關(guān)結(jié)論與定義,我們需對(duì)這五個(gè)結(jié)論逐一進(jìn)行判斷,才能得到正確的結(jié)論.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

6、某醫(yī)療研究所為了檢驗(yàn)新開(kāi)發(fā)的流感疫苗對(duì)甲型H1N1流感的預(yù)防作用,把1000名注射了疫苗的人與另外1000名未注射疫苗的人的半年的感冒記錄作比較,提出假設(shè)H0:“這種疫苗不能起到預(yù)防甲型H1N1流感的作用”,并計(jì)算出P(Χ2≥6.635)≈0.01,則下列說(shuō)法正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

3、下列說(shuō)法正確的是( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

下列說(shuō)法正確的是
②③⑤
②③⑤
.(只填正確說(shuō)法序號(hào))
①若集合A={y|y=x-1},B={y|y=x2-1},則A∩B={(0,-1),(1,0)};
②函數(shù)y=f(x)的圖象與x=a(a∈R)的交點(diǎn)個(gè)數(shù)只能為0或1;
f(x)=lg(x+
x2+1
)
是定義在R上的奇函數(shù);
④若函數(shù)f(x)在(-∞,0],(0,+∞)都是單調(diào)增函數(shù),則f(x)在(-∞,+∞)上也是增函數(shù);
⑤定義max(a,b)=
a,(a≥b)
b,(a<b)
,則f(x)=max(x+1,4-2x)的最小值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在線性回歸模型y=bx+a+e中,下列說(shuō)法正確的是(  )

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

變量x與變量y,w,z的對(duì)應(yīng)關(guān)系如下表所示:
x 1 2 3 1 5 6
y -1 -2 -3 -4 -1 -6
w 2 0 1 2 4 8
z 0 0 0 0 0 0
下列說(shuō)法正確的是( 。

查看答案和解析>>

同步練習(xí)冊(cè)答案