【題目】已知函數(shù)f(x)=sinx+cos(x+ ),x∈R.
(1)求f(x)的最小正周期及單調(diào)遞增區(qū)間;
(2)若x是第二象限角,且f(x﹣ )=﹣ cos2x,求cosx﹣sinx的值.
【答案】
(1)解:由 = ,
∴f(x)最小正周期T=2π.
由 ≤ ≤ ,k∈Z,得 ≤x≤ ,k∈Z.
∴函數(shù)f(x)的單調(diào)遞增區(qū)間為[ ],k∈Z;
(2)解:由已知,有 ,
于是 ,
即 .
當sinx+cosx=0時,由x是第二象限角,知 ,k∈Z.
此時cosx﹣sinx= .
當sinx+cosx≠0時,得 .
綜上所述, 或
【解析】(1)利用三角函數(shù)的誘導公式化簡f(x)即可求出f(x)的最小正周期及單調(diào)遞增區(qū)間;(2)把x﹣ 代入f(x)化簡得 ,再分類討論,當sinx+cosx=0和sinx+cosx≠0時,求出cosx﹣sinx的值即可.
科目:高中數(shù)學 來源: 題型:
【題目】一名心率過速患者服用某種藥物后心率立刻明顯減慢,之后隨著藥力的減退,心率再次慢慢升高,則自服藥那一刻起,心率關于時間的一個可能的圖象是( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=2sin(ωx+φ)(﹣π<φ<0,ω>0)的圖象關于直線 對稱,且兩相鄰對稱中心之間的距離為 .
(1)求函數(shù)y=f(x)的單調(diào)遞增區(qū)間;
(2)若關于x的方程f(x)+log2k=0在區(qū)間 上總有實數(shù)解,求實數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,在平面四邊形ABCD中,AD=1,CD=2,AC= .
(1)求cos∠CAD的值;
(2)若cos∠BAD=﹣ ,sin∠CBA= ,求BC的長.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知某算法的程序框圖如圖所示,若將輸出(x,y)的值依次記(x1 , y1),(x2 , y2),…(xn , yn),
(1)若程序運行中輸出的一個數(shù)組是(9,t),求t的值;
(2)程序結(jié)束時,共輸出(x,y)的組數(shù)位多少.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】下列函數(shù)中,在其定義域既是奇函數(shù)又是減函數(shù)的是( )
A.y=|x|
B.y=﹣x3
C.y=( )x
D.y=
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】數(shù)列{an}滿足a1=1,nan+1=(n+1)an+n(n+1),n∈N* .
(1)證明:數(shù)列{ }是等差數(shù)列;
(2)設bn=3n ,求數(shù)列{bn}的前n項和Sn .
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=(x﹣a)(x﹣b)(其中a>b)的圖象如圖所示,則函數(shù)g(x)=b+logax的圖象大致是( )
A.
B.
C.
D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com