在正方體
的側(cè)面
內(nèi)有一動點
到直線
與直線
的距離相等,則動點
所在的曲線的形狀為…………( )
專題:圖表型.
分析:根據(jù)題意可知P到點B的距離等于到直線A1B1的距離,利用拋物線的定義推斷出P的軌跡是以B為焦點,以A1B1為準線的過A的拋物線的一部分.看圖象中,A的形狀不符合;B的B點不符合;D的A點符合.從而得出正確選項.
解:依題意可知P到點B的距離等于到直線A1B1的距離,
根據(jù)拋物線的定義可知,動點P的軌跡是以B為焦點,以A1B1為準線的過A的拋物線的一部分.
A的圖象為直線的圖象,排除A.
C項中B不是拋物線的焦點,排除C.
D項不過A點,D排除.
故選B .
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分12分)(注意:在試題卷上作答無效)
在四棱錐
中,側(cè)面
底面
,
,底面
是直角梯形,
,
,
,
.
(Ⅰ)求證:
平面
;
(Ⅱ)設
為側(cè)棱
上一點,
,
試確定
的值,使得二面角
為
.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,已知PA
面ABC,AB
BC,若PA=AC=2,AB=1
(1)求證:面PAB
面PBC; (2)求二面角A-PC-B的正弦值。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
在三棱錐P-ABC內(nèi),已知PA=PC=AC=,AB=BC=1,面PAC⊥面ABC,E是BC的中點.
(1)求直線PE與AC所成角的余弦值;
(2)求直線PB與平面ABC所成的角的正弦值;
(3)求點C到平
面PAB的距
離.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖,在四棱錐
P-
ABCD中,
PD⊥平面
ABCD,
AD⊥
CD,
DB平分∠
ADC,
E為
PC的中點,
AD=
CD=1,
DB=2.
(1)證明
PA∥平面
BDE;
(2)證明
AC⊥平面
PBD;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖1,在平面內(nèi),ABCD
是
且
的菱形,
和
都是正方形。將兩個正方形分別沿AD,CD折起,使
與
重合于點D1。設直線l過點B且垂直于菱形ABCD所在的平面,點E是直線l上的一個動點,且與點D1位于平面ABCD同側(cè),設
(圖2)。
(1)設二面角E – AC – D1的大小為q,若
,求
的取值范圍;
(2)在線段
上是否存在點
,使平面
平面
,若存在,求出
分
所成的比
;若不存在,請說明理由。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
17.(本小題滿分8分)如圖,正方體
ABCD—
A1B1C1D1中,
E為
DD1中點,
(1)求證:
BD1∥平面
AEC;
(2)求:異面直線
BD與
AD1所成的角的大小.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分12分)
如圖已知,點
P是直角梯形
ABCD所在平面外一點,
PA⊥平面
ABCD,
,
,
。
(1)求證:
;
(2)求直線
PB與平面
ABE所成的角
;
(3)求
A點到平面
PCD的距離。
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
如圖4,
是半徑為
的半
圓,
為直徑,點
為
的中點,點
和點
為線段
的三等分點,平面
外一點
滿足
平面
,
=
.
(1)證明:
;
(2)求點
到平面
的距離.
查看答案和解析>>