在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,E,F(xiàn)分別為A1D1和CC1的中點(diǎn).
(Ⅰ)求證:EF∥平面ACD1
(Ⅱ)求異面直線EF與AB所成的角的余弦值;
(Ⅲ)在棱BB1上是否存在一點(diǎn)P,使得二面角P-AC-B的大小為30°?若存在,求出BP的長(zhǎng);若不存在,請(qǐng)說明理由.

【答案】分析:如圖分別以DA、DC、DD1所在的直線為x軸、y軸、z軸建立空間直角坐標(biāo)系D-xyz,先寫出各點(diǎn)坐標(biāo):
(I)取AD1中點(diǎn)G,則G(1,0,1),=(1,-2,1),又 =(-1,2,-1),證明 共線即可;
(II)求出兩異面直線的方向向量,用數(shù)量積公式求夾角余弦即可,易求;
(III)假設(shè)存在,設(shè)出點(diǎn)P的空間坐標(biāo),根據(jù)題設(shè)中所給的條件二面角P-AC-B的大小為30°利用數(shù)量積公式建立關(guān)于引入的參數(shù)的方程即可,若求得的參數(shù)符合題意,則說明存在,否則說明不存在.
解答:解:如圖分別以DA、DC、DD1所在的直線為x軸、y軸、z軸建立空間直角坐標(biāo)系D-xyz,由已知得D(0,0,0)、A(2,0,0)、B(2,2,0)、
C(0,2,0)、B1(2,2,2)、D1(0,0,2)、E(1,0,2)、F(0,2,1).
(I)取AD1中點(diǎn)G,則G(1,0,1),=(1,-2,1),又 =(-1,2,-1),由 ,
共線.
從而EF∥CG,
∵CG?平面ACD1,EF?平面ACD1,
∴EF∥平面ACD1.(6分)
(II)∵=(0,2,0)∴=
(III)假設(shè)滿足條件的點(diǎn)P存在,可設(shè)點(diǎn)P(2,2,t),(0<t≤2),=(0,2,t),=(-2,2,0)
平面ACP的一個(gè)法向量為=(1,1,),易知平面ABC的一個(gè)法向量=(0,0,2)依題意知∴|cos|==解得t=∈(0,2)∴在棱BB1上存在一點(diǎn)P,當(dāng)BP的長(zhǎng)為時(shí),二面角P-AC-B的大小為30°
點(diǎn)評(píng):本題考查用向量法證明線面平行,求異面直線所成的角以及二面角,用向量方法解決立體幾何中的位置關(guān)系、夾角及距離問題是空間向量的一個(gè)重要運(yùn)用,學(xué)習(xí)時(shí)注意總結(jié)向量法解立體幾何題的規(guī)律,此方法也是近幾年高考比較熱的一個(gè)考點(diǎn).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在棱長(zhǎng)為2的正方體ABCD-A1B1C1D1中,O是底面ABCD的中心,E、F分別是CC1、AD的中點(diǎn),那么異面直線OE和FD1所成的角的余弦值等于( 。
A、
10
5
B、
15
5
C、
4
5
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在棱長(zhǎng)為2的正方體AC1中,G是AA1的中點(diǎn),則BD到平面GB1D1的距離是( 。
A、
6
3
B、
2
6
3
C、
2
3
3
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科)如圖,在棱長(zhǎng)為1的正方體A'C中,過BD及B'C'的中點(diǎn)E作截面BEFD交C'D'于F.
(1)求截面BEFD與底面ABCD所成銳二面角的大;
(2)求四棱錐A'-BEFD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2007•上海)如圖,在棱長(zhǎng)為2的正方體ABCD-A'B'C'D'中,E,F(xiàn)分別是A'B'和AB的中點(diǎn),求異面直線A'F與CE所成角的大小 (結(jié)果用反三角函數(shù)值表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:黑龍江省鶴崗一中2010-2011學(xué)年高一下學(xué)期期末考試數(shù)學(xué)理科試題 題型:013

在棱長(zhǎng)為2的正方體A中,點(diǎn)E,F(xiàn)分別是棱AB,BC的中點(diǎn),則點(diǎn)到平面EF的距離是

[  ]

A.

B.

C.

D.

查看答案和解析>>

同步練習(xí)冊(cè)答案