設函數(shù)f(x)=ax+bx-cx,其中c>a>0,c>b>0.若a,b,c是△ABC的三條邊長,則下列結論正確的是______.(寫出所有正確結論的序號)
①?x∈(-∞,1),f(x)>0;
②?x∈R,使ax,bx,cx不能構成一個三角形的三條邊長;
③若△ABC為鈍角三角形,則?x∈(1,2),使f(x)=0.
①∵a,b,c是△ABC的三條邊長,∴a+b>c,
∵c>a>0,c>b>0,∴0<
a
c
<1,0<
b
c
<1
,
當x∈(-∞,1)時,f(x)=ax+bx-cx=cx[(
a
c
)
x
+(
b
c
)
x
-1]>cx?(
a
c
+
b
c
-1)=cx?
a+b-c
c
>0
,∴①正確.
②令a=2,b=3,c=4,則a.b.c可以構成三角形,但a2=4,b2=9,c2=16卻不能構成三角形,∴②正確.
③∵c>a>0,c>b>0,若△ABC為鈍角三角形,∴a2+b2-c2<0,
∵f(1)=a+b-c>0,f(2)=a2+b2-c2<0,
∴根據(jù)根的存在性定理可知在區(qū)間(1,2)上存在零點,即?x∈(1,2),使f(x)=0,∴③正確.
故答案為:①②③.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:填空題

下列說法:
①函數(shù)f(x)=lnx+3x-6的零點只有1個且屬于區(qū)間(1,2);
②若關于x的不等式ax2+2ax+1>0恒成立,則a∈(0,1);
③函數(shù)y=x的圖象與函數(shù)y=sinx的圖象有3個不同的交點;
④函數(shù)y=sinxcosx+sinx+cosx,x∈[0,
π
4
]
的最小值是1.
正確的有______.(請將你認為正確的說法的序號都寫上)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知下列命題:
①命題“若x≠1,則x2-3x+2≠0”的逆否命題是“若x2-3x+2=0,則x=1”
②命題p:?x∈R,x2+x+1≠0,則?p:?x∈R,x2+x+1=0.
③若p∨q為真命題,則p,q均為真命題
④“x>2”是“x2-3x+2>0”的充分不必要條件
其中,真命題的個數(shù)有( 。
A.4個B.3個C.2個D.1個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

下面有5個命題:
①函數(shù)y=|sinx+
1
2
|的最小正周期是π.
②終邊在y軸上的角的集合是{a|a=
2
,k∈Z}.
③在同一坐標系中,函數(shù)y=sinx的圖象和函數(shù)y=x的圖象有3個公共點.
④把函數(shù)y=3sin(2x+
π
3
)的圖象向右平移得到y(tǒng)=3sin2x的圖象.
⑤函數(shù)y=sinx在[0,π]上是減函數(shù).
其中,真命題的編號是______.(寫出所有真命題的編號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設a,b,k是實數(shù),二次函數(shù)f(x)=x2+ax+b滿足:f(k-1)與f(k)異號,f(k+1)與f(k)異號.在以下關于f(x)的零點的命題中,真命題是( 。
A.該二次函數(shù)的零點都小于k
B.該二次函數(shù)的零點都大于k
C.該二次函數(shù)的兩個零點之差一定大于2
D.該二次函數(shù)的零點均在區(qū)間(k-1,k+1)內(nèi)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列四個命題,其中正確的是( 。
①已知向量
α
β
,則“
α
β
=0
”的充要條件是“
α
=
0
β
=
0
”;
②已知數(shù)列{an}和{bn},則“
lim
n→∞
anbn=0
”的充要條件是“
lim
n→∞
an=0
lim
n→∞
bn=0
”;
③已知z1,z2∈C,則“z1•z2=0”的充要條件是“z1=0或z2=0”;
④已知α,β∈R,則“sinα•cosβ=0”的充要條件是“α=kπ,(k∈Z)或β=
π
2
+kπ,(k∈Z)
A.①②B.②③C.①④D.③④

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列說法正確的是 (     )
A.“”是“上為增函數(shù)”的充要條件[]
B.命題“使得”的否定是:“
C.“”是“”的必要不充分條件
D.命題p:“”,則p是真命題

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

命題“”的否定為( 。
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

用反證法證明某命題時,對結論:“自然數(shù)中恰有一個偶數(shù)”正確的反設為(   )
A.都是奇數(shù)
B.都是偶數(shù)
C.中至少有兩個偶數(shù)
D.中至少有兩個偶數(shù)或都是奇數(shù)

查看答案和解析>>

同步練習冊答案