(本小題12分)
已知函數(shù)f(x)=x-(2a+1)x+3a(a+2)x+,其中a為實數(shù)。
(1)當a=-1時,求函數(shù)y=f(x)在[0,6]上的最大值與最小值;
(2)當函數(shù)y=f(x)的圖像在(0,6)上與x軸有唯一的公共點時,求實數(shù)a的取值范圍。
(1) -1
(2)實數(shù)a的取值范圍為-2<a≤0,或a=1,或2≤a<4
【解析】解: (1)當a=-1時,有f(x)=x+x―3x+, f(x)= x+2x-3=0得x=1,x=-3,顯然在區(qū)間[0,6]上只有根x=1; --------3分
x |
0 |
(0,1) |
1 |
(1,6) |
6 |
f(x) |
|
- |
0 |
+ |
|
f(x) |
↘ |
-1 |
↗ |
90 |
由上表可知:y=f(x)在[0,6]上的最大值為,最小值為-1; --------6分
(2)f(x)=x-2(2a+1)x+3a(a+2)=[x-(a+2)](x―3a)=0得x=a+2,x=3a
i、當a=1,即x=x=3時,顯然滿足條件; ---------7分
ii、當?shù)脁≠x,
若x>x,a+2>3aa<1,進而x<x<3, f(x)在(0,6)上有唯一根,可知
解得-2<a≤0
若x<xa+2<3aa>1,進而x>x>3, f(x)在(0,6)有唯一根,知
解得2≤a<4
所以實數(shù)a的取值范圍為-2<a≤0,或a=1,或2≤a<4。 ---------12分
科目:高中數(shù)學 來源:2010-2011學年福建師大附中高三上學期期中考試理科數(shù)學卷 題型:解答題
(本小題12分)已知函數(shù)(為常數(shù))是實數(shù)集上的奇函數(shù),函數(shù)是區(qū)間[-1,1]上的減函數(shù).
(I)求的值;
(II)若在及所在的取值范圍上恒成立,求的取值范圍;
(Ⅲ)討論關(guān)于的方程的根的個數(shù).
查看答案和解析>>
科目:高中數(shù)學 來源:2010年吉林省高一上學期期中考試數(shù)學試卷 題型:解答題
(本小題12分)已知二次函數(shù)滿足且.
(1)求的解析式;
(2) 當時,不等式:恒成立,求實數(shù)的范圍.
(3)設(shè),求的最大值;
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年福建省高二下學期期中考試理科數(shù)學 題型:解答題
(本小題12分)
已知雙曲線的中心在原點,左右焦點分別為,離心率為,且過點,
(1)求此雙曲線的標準方程;
(2)若直線系(其中為參數(shù))所過的定點恰在雙曲線上,求證:。
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年福建省四地六校高二下學期第一次月考數(shù)學文卷 題型:解答題
(本小題12分)
已知橢圓C的左右焦點坐標分別是(-1,0),(1, 0),離心率,直線與橢圓C交于不同的兩點M,N,以線段MN為直徑作圓P。
(1)求橢圓C的方程;
(2)若圓P恰過坐標原點,求圓P的方程;
查看答案和解析>>
科目:高中數(shù)學 來源:2010-2011年河南省許昌市高二下學期聯(lián)考數(shù)學理卷 題型:解答題
(本小題12分)
已知曲線直線,且直線與曲線相切于點,求直線的方程和切點的坐標。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com