設(shè)函數(shù),其對(duì)應(yīng)的圖像為曲線C;若曲線C過(guò),且在點(diǎn)處的切斜線率
(1)求函數(shù)的解析式
(2)證明不等式.
(1) ;(2)詳見(jiàn)解析.

試題分析:(1)由題設(shè)可得兩個(gè)方程: ①,  ②.解這個(gè)方程組,求得的值,便得函數(shù)的解析式.(2)要證明不等式只需證)的最大值小于等于0即可,而利用導(dǎo)數(shù)很易求得的最大值,從而使問(wèn)題得證.
試題解析:(1)由 
∵曲線C過(guò)     ∴   ①                 2分
又∵曲線C在點(diǎn)處的切斜線率
  ②                          4分
聯(lián)立①②解之得                       5分
∴函數(shù)的解析式為              6分
(2)由(1)知其定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824025323388535.png" style="vertical-align:middle;" />
),則         8分

),解之得         10分
∴函數(shù) 上單調(diào)遞增,在 上單調(diào)遞減,    12分
,所以的最大值為0,故當(dāng)時(shí),.  13分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(I)求函數(shù)的單調(diào)遞減區(qū)間;
(II)若上恒成立,求實(shí)數(shù)的取值范圍;
(III)過(guò)點(diǎn)作函數(shù)圖像的切線,求切線方程

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù):
(1)討論函數(shù)的單調(diào)性;
(2)若對(duì)于任意的,若函數(shù)在 區(qū)間上有最值,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知是二次函數(shù),不等式的解集是(0,5),且f(x)在區(qū)間[-1,4]上的最大值是12.
(1)求的解析式;
(2)是否存在自然數(shù)m,使得方程=0在區(qū)間(m,m+1)內(nèi)有且只有兩個(gè)不等的實(shí)數(shù)根?若存在,求出所有m的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)為自然對(duì)數(shù)的底數(shù)).
(Ⅰ)求函數(shù)的單調(diào)區(qū)間;
(Ⅱ)當(dāng)時(shí),若對(duì)任意的恒成立,求實(shí)數(shù)的值;
(Ⅲ)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=-(a+2)x+lnx.
(1)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f (1))處的切線方程;
(2)當(dāng)a>0時(shí),若f(x)在區(qū)間[1,e)上的最小值為-2,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù).
(Ⅰ)若函數(shù)的值域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824024759032515.png" style="vertical-align:middle;" />.求關(guān)于的不等式的解集;
(Ⅱ)當(dāng)時(shí),為常數(shù),且,求的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若曲線在點(diǎn)處的切線與兩條坐標(biāo)軸圍成的三角形的面積為54,則(   )
A.3B.6 C.9D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)的圖象在處的切線與圓相切,則的最大值是(    )
A.4B.C.2D.

查看答案和解析>>

同步練習(xí)冊(cè)答案