在三棱柱ABC ?A1B1C1中,AA1⊥BC,∠A1AC=60°,AA1=AC=BC=1,A1B=.
(1)求證:平面A1BC⊥平面ACC1A1;
(2)如果D為AB的中點(diǎn),求證:BC1∥平面A1CD.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練填空題押題練D組練習(xí)卷(解析版) 題型:填空題
兩個半徑分別為r1,r2的圓M、N,公共弦AB長為3,如圖所示,則·+·=________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練填空題押題練A組練習(xí)卷(解析版) 題型:填空題
如圖是見證魔術(shù)師“論證”64=65飛神奇.對這個乍看起來頗為神秘的現(xiàn)象,我們運(yùn)用數(shù)學(xué)知識不難發(fā)現(xiàn)其中的謬誤.另外,我們可以更換圖中的數(shù)據(jù),就能構(gòu)造出許多更加直觀與“令人信服”的“論證”.
請你用數(shù)列知識歸納:(1)這些圖中的數(shù)所構(gòu)成的數(shù)列:________;(2)寫出與這個魔術(shù)關(guān)聯(lián)的一個數(shù)列遞推關(guān)系式:________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練倒數(shù)第9天練習(xí)卷(解析版) 題型:填空題
設(shè)g(x)是定義在R上以1為周期的函數(shù),若函數(shù)f(x)=x+g(x)在區(qū)間[3,4]時的值域?yàn)?/span>[-2,5],則f(x)在區(qū)間[2,5]上的值域?yàn)?/span>________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練倒數(shù)第9天練習(xí)卷(解析版) 題型:填空題
已知函數(shù)f(x)的導(dǎo)數(shù)f′(x)=a(x+1)(x-a),若f(x)在x=a處取到極大值,則a的取值范圍是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練倒數(shù)第8天練習(xí)卷(解析版) 題型:填空題
已知α,β是兩個不同的平面,下列四個條件:
①存在一條直線a,a⊥α,a⊥β;
②存在一個平面γ,γ⊥α,γ⊥β;
③存在兩條平行直線a,b,a?α,b?β,a∥β,b∥α;
④存在兩條異面直線a,b,a?α,b?β,a∥β,b∥α.
其中是平面α∥平面β的充分條件的為________(填上所有符號要求的序號).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練倒數(shù)第7天練習(xí)卷(解析版) 題型:填空題
設(shè)函數(shù)f(x)=-x3+3x+2,若不等式f(3+2sin θ)<m對任意θ∈R恒成立,則實(shí)數(shù)m的取值范圍為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練倒數(shù)第6天練習(xí)卷(解析版) 題型:填空題
在△ABC中,若A=30°,b=2,且2 ·-2=0,則△ABC的面積為________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源:2013-2014學(xué)年高考數(shù)學(xué)(文)三輪專題體系通關(guān)訓(xùn)練倒數(shù)第3天練習(xí)卷(解析版) 題型:解答題
求矩陣的特征值及對應(yīng)的特征向量.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com