若函數(shù)y=f(x)滿足:集合A={f(n)|n∈N*}中至少有三個(gè)不同的數(shù)成等差數(shù)列,則稱函數(shù)f(x)是“等差源函數(shù)”,則下列四個(gè)函數(shù)中,“等差源函數(shù)”的個(gè)數(shù)是( 。
①y=2x+1;
②y=log2x;
③y=2x+1;
④y=sin(
π
4
x+
π
4
A、1B、2C、3D、4
考點(diǎn):進(jìn)行簡單的合情推理
專題:綜合題,推理和證明
分析:利用新定義,進(jìn)行驗(yàn)證即可得出結(jié)論.
解答:解:①y=2x+1,n∈N*,是等差源函數(shù);
②∵log21,log22,log24構(gòu)成等差數(shù)列,∴y=log2x是等差源函數(shù);
③y=2x+1不是等差源函數(shù),因?yàn)槿羰,則2(2p+1)=(2m+1)+(2n+1),則2p+1=2m+2n,
∴2p+1-n=2m-n+1,左邊是偶數(shù),右邊是奇數(shù),故y=2x+1不是等差源函數(shù);
④y=sin(
π
4
x+
π
4
)是周期函數(shù),顯然是等差源函數(shù).
故選:C.
點(diǎn)評(píng):本題考查等差源函數(shù)的判斷與證明,是中檔題,解題時(shí)要認(rèn)真審題,注意反證法的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)平面α與平面β相交于直線l,直線a?α,直線b?β,b∥l,則“a∥β”是“a∥b”的( 。
A、充分而不必要條件B、必要而不充分條件C、充要條件D、既不充分又不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=(x+a)2-7lnx+1在(1,+∞)上單調(diào)遞增,則實(shí)數(shù)a的取值范圍為( 。
A、(
5
2
,+∞)
B、[
5
2
,+∞)
C、(-∞,
5
2
D、(-∞,-
5
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

調(diào)查某醫(yī)院某段時(shí)間內(nèi)嬰兒出生的時(shí)間與性別的關(guān)系,得到下面的數(shù)據(jù)表:
晚上 白天 合計(jì)
男嬰 24 30 54
女嬰 8 26 34
合計(jì) 32 56 88
你認(rèn)為嬰兒的性別與出生時(shí)間有關(guān)系的把握為(  )
A、80%B、90%
C、95%D、99%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

隨機(jī)詢問某大學(xué)40名不同性別的大學(xué)生在購買食物時(shí)是否讀營養(yǎng)說明,得到如下列聯(lián)表:性別與讀營養(yǎng)說明列聯(lián)表
總計(jì)
讀營養(yǎng)說明 16 8 24
不讀營養(yǎng)說明 4 12 16
總計(jì) 20 20 40
(1)根據(jù)以上列聯(lián)表進(jìn)行獨(dú)立性檢驗(yàn),能否在犯錯(cuò)誤的概率不超過0.01的前提下認(rèn)為性別與是否讀營養(yǎng)說明之間有關(guān)系?
(2)從被詢問的16名不讀營養(yǎng)說明的大學(xué)生中,隨機(jī)抽取2名學(xué)生,求抽到男生人數(shù)ξ的分布列及其均值(即數(shù)學(xué)期望).
(注:K2=
n(ad-bc)2
(a+b)(c+d)(a+c)(b+d)
,其中n=a+b+c+d為樣本容量.)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知復(fù)數(shù)z滿足(3+4i)z=25,則z=( 。
A、3-4iB、3+4iC、-3-4iD、-3+4i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)i是虛數(shù)單位,復(fù)數(shù)i3+
2i
1+i
=( 。
A、-iB、iC、-1D、1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為BC1的中點(diǎn),則DE與面BCC1B1所成角的正切值為(  )
A、
6
2
B、
6
3
C、
2
D、
2
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

矩陣A=
1   0
0   2
,向量
α
=
1
2
,則A10
α
=( 。
A、
1
210
B、
1
211
C、
20
60
D、
11
22

查看答案和解析>>

同步練習(xí)冊(cè)答案