【題目】給出下列命題:①等比數(shù)列1,,,,…()的前項(xiàng)和為;②等差數(shù)列中,若,,則該數(shù)列的前13項(xiàng)或14項(xiàng)之和最大;③若等差數(shù)列公差為,則其前項(xiàng)和;④若等比數(shù)列單調(diào)遞增的充要條件是首項(xiàng),且公比;⑤若數(shù)列滿足,,則.其中正確的是______(把你認(rèn)為正確的命題序號都填上).
【答案】②③⑤
【解析】
當(dāng)時(shí)可判斷出①;在②中,由已知條件結(jié)合等差數(shù)列的性質(zhì)易得,根據(jù)等差數(shù)列前項(xiàng)和的性質(zhì)即可得出結(jié)論;在③中,利用等差數(shù)列的前項(xiàng)和公式和通項(xiàng)公式即可得結(jié)果;在④中,當(dāng),時(shí),等比數(shù)列也為遞增,可判斷④;在⑤中,可判斷出數(shù)列為等差數(shù)列,求出其通項(xiàng)公式并判斷出其與0的關(guān)系,代入即可得結(jié)論.
對于①,當(dāng)時(shí),顯然不成立;
對于②,由于,,
∴,即,
又∵,
∴該數(shù)列的前13項(xiàng)或14項(xiàng)之和最大,故②正確;
對于③,由于,
∴,故③正確.
對于④,由于等比數(shù)列的通項(xiàng)公式為,
故當(dāng),時(shí),等比數(shù)列也為遞增數(shù)列,故④錯(cuò)誤;
對于⑤,由于,,
∴數(shù)列是以為首項(xiàng),2為公差的等差數(shù)列,
∴,
即可得當(dāng)時(shí),,,
當(dāng)時(shí),,,
∴,故⑤正確;
故答案為:②③⑤.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知的頂點(diǎn),邊上的高所在的直線的方程為,為中點(diǎn),且所在的直線的方程為.
(1)求邊所在的直線方程;
(2)求邊所在的直線方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖, 中,,,分別為,邊的中點(diǎn),以為折痕把折起,使點(diǎn)到達(dá)點(diǎn)的位置,且.
(1)證明:平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某地區(qū)有小學(xué)21所,中學(xué)14所,大學(xué)7所.現(xiàn)采用分層抽樣的方法從這些學(xué)校中抽取6所學(xué)校,對學(xué)生進(jìn)行視力檢查.
(Ⅰ) 求應(yīng)從小學(xué)、中學(xué)、大學(xué)中分別抽取的學(xué)校數(shù)目;
(Ⅱ) 若從抽取的6所學(xué)校中隨即抽取2所學(xué)校作進(jìn)一步數(shù)據(jù)
①列出所有可能抽取的結(jié)果;
②求抽取的2所學(xué)校沒有大學(xué)的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某省確定從2021年開始,高考采用“”的模式,取消文理分科,即“3”包括語文、數(shù)學(xué)、外語,為必考科目;“1”表示從物理、歷史中任選一門;“2”則是從生物、化學(xué)、地理、政治中選擇兩門,共計(jì)六門考試科目.某高中從高一年級2000名學(xué)生(其中女生900人)中,采用分層抽樣的方法抽取名學(xué)生進(jìn)行調(diào)查.
(1)已知抽取的名學(xué)生中含男生110人,求的值及抽取到的女生人數(shù);
(2)學(xué)校計(jì)劃在高二上學(xué)期開設(shè)選修中的“物理”和“歷史”兩個(gè)科目,為了了解學(xué)生對這兩個(gè)科目的選課情況,對在(1)的條件下抽取到的n名學(xué)生進(jìn)行問卷調(diào)查(假定每名學(xué)生在這兩個(gè)科目中必須選擇一個(gè)科目且只能選擇一個(gè)科目).下表是根據(jù)調(diào)查結(jié)果得到的列聯(lián)表,請將列聯(lián)表補(bǔ)充完整,并判斷是否有99.5%的把握認(rèn)為選擇科目與性別有關(guān)?
說明你的理由;
(3)在(2)的條件下,從抽取的選擇“物理”的學(xué)生中按分層抽樣抽取6人,再從這6名學(xué)生中抽取2人,對“物理”的選課意向作深入了解,求2人中至少有1名女生的概率.
附:,其中.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】一年之計(jì)在于春,一日之計(jì)在于晨,春天是播種的季節(jié),是希望的開端.某種植戶對一塊地的個(gè)坑進(jìn)行播種,每個(gè)坑播3粒種子,每粒種子發(fā)芽的概率均為,且每粒種子是否發(fā)芽相互獨(dú)立.對每一個(gè)坑而言,如果至少有兩粒種子發(fā)芽,則不需要進(jìn)行補(bǔ)播種,否則要補(bǔ)播種.
(1)當(dāng)取何值時(shí),有3個(gè)坑要補(bǔ)播種的概率最大?最大概率為多少?
(2)當(dāng)時(shí),用表示要補(bǔ)播種的坑的個(gè)數(shù),求的分布列與數(shù)學(xué)期望.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出下列三個(gè)命題:(1)如果一個(gè)平面內(nèi)有無數(shù)條直線平行于另一個(gè)平面,則這兩個(gè)平面平行;(2)一個(gè)平面內(nèi)的任意一條直線都與另一個(gè)平面不相交,則這兩個(gè)平面平行;(3)一個(gè)平面內(nèi)有不共線的三點(diǎn)到另一個(gè)平面的距離相等,則這兩個(gè)平面平行;其中正確命題的個(gè)數(shù)是( )
A. 0B. 1C. 2D. 3
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了檢測某種零件的一條生產(chǎn)線的生產(chǎn)過程,從生產(chǎn)線上隨機(jī)抽取一批零件,根據(jù)其尺寸的數(shù)據(jù)得到如圖所示的頻率分布直方圖.若尺寸落在區(qū)間()之外,則認(rèn)為該零件屬“不合格”的零件,其中,分別為樣本平均數(shù)和樣本標(biāo)準(zhǔn)差,計(jì)算可得:(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值作代表).
(1)若一個(gè)零件的尺寸是,試判斷該零件是否屬于“不合格”的零件;
(2)工廠利用分層抽樣的方法從樣本的前3組中抽出6個(gè)零件,標(biāo)上記號,并從這6個(gè)零件中再抽取2個(gè),求再次抽取的2個(gè)零件中恰有1個(gè)尺寸不超過的概率.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在四棱錐中,底面是且邊長為的菱形,側(cè)面為正三角形,其所在平面垂直于底面,若為的中點(diǎn),為的中點(diǎn).
(1)求證:平面;
(2)求證:;
(3)在棱上是否存在一點(diǎn),使平面平面,若存在,確定點(diǎn)的位置;若不存在,說明理由
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com