使 n(nN*)的展開式中含有常數(shù)項的最小的n(  )

A4 B5 C6 D7

 

B

【解析】展開式的通項公式Tr1(3x)nr r

Tr13nrx,r0,1,2,n.

nr0,nr故最小正整數(shù)n5.

 

練習冊系列答案
相關習題

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關訓練1-1練習卷(解析版) 題型:填空題

M>N“l(fā)og2M>log2N成立的______條件(充要、充分不必要、必要不充分中選擇一個正確的填寫)

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習體系通關訓練1-10練習卷(解析版) 題型:選擇題

復數(shù)z的共軛復數(shù)(  )

A12i B12i C2i D2i

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題能力測評7練習卷(解析版) 題型:解答題

受轎車在保修期內(nèi)維修費等因素的影響,企業(yè)生產(chǎn)每輛轎車的利潤與該轎車首次出現(xiàn)故障的時間有關.某轎車制造廠生產(chǎn)甲、乙兩種品牌轎車,保修期均為2年.現(xiàn)從該廠已售出的兩種品牌轎車中各隨機抽取50輛,統(tǒng)計數(shù)據(jù)如下:

品牌

首次出現(xiàn)故

障時間x()

0<x≤1

1<x≤2

x>2

0<x≤2

x>2

轎車數(shù)量()

2

3

45

5

45

每輛利潤

(萬元)

1

2

3

1.8

2.9

將頻率視為概率,解答下列問題:

(1)從該廠生產(chǎn)的甲品牌轎車中隨機抽取一輛,求其首次出現(xiàn)故障發(fā)生在保修期內(nèi)的概率.

(2)若該廠生產(chǎn)的轎車均能售出,記生產(chǎn)一輛甲品牌轎車的利潤為X1,生產(chǎn)一輛乙品牌轎車的利潤為X2,分別求X1,X2的分布列.

(3)該廠預計今后這兩種品牌轎車銷量相當,由于資金限制,只能生產(chǎn)其中一種品牌的轎車.若從經(jīng)濟效益的角度考慮,你認為應生產(chǎn)哪種品牌的轎車?說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題能力測評7練習卷(解析版) 題型:填空題

(1)20的二項展開式中,x的系數(shù)與x9的系數(shù)之差為 ________.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題能力測評7練習卷(解析版) 題型:選擇題

為了解某地區(qū)的中小學生視力情況,擬從該地區(qū)的中小學生中抽取部分學生進行調(diào)查,事先已了解到該地區(qū)小學、初中、高中三個學段學生的視力情況有較大差異,而男女生視力情況差異不大,在下面的抽樣方法中,最合理的抽樣方法是(  )

A.簡單隨機抽樣 B.按性別分層抽樣 C.按學段分層抽樣 D.系統(tǒng)抽樣

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題能力測評6練習卷(解析版) 題型:填空題

l1,l2是分別經(jīng)過A(1,1),B(0,-1)兩點的兩條平行直線,當l1,l2間的距離最大時,直線l1的方程是________

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題能力測評5練習卷(解析版) 題型:填空題

如圖所示,在直三棱柱ABCA1B1C1中,底面是ABC為直角的等腰直角三角形,AC2a,BB13aDA1C1的中點,點F在線段AA1上,當AF________時,CF平面B1DF.

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014年高考數(shù)學(理)二輪復習專題能力測評3練習卷(解析版) 題型:選擇題

函數(shù)f(x)sin xcos 的值域為(  )

A[2,2] B C[1,1] D.

 

查看答案和解析>>

同步練習冊答案