【題目】某公司為確定下一年度投入某種產(chǎn)品的宣傳費,需了解年宣傳費(單位:千元)對年銷售量(單位:)和年利潤(單位:千元)的影響,對近13年的宣傳費和年銷售量 數(shù)據(jù)作了初步處理,得到下面的散點圖及一些統(tǒng)計量的值

由散點圖知,建立關于的回歸方程是合理的,經(jīng)計算得如下數(shù)據(jù)

10.15

109.94

0.16

-2.10

0.21

21.22

(1)根據(jù)以上信息,建立關于的回歸方程;

(2)已知這種產(chǎn)品的年利潤的關系為根據(jù)(1)的結(jié)果,求當年宣傳費,年利潤的預報值是多少

對于一組數(shù)據(jù),其回歸直線的斜率和截距的最小二乘估計分別為

【答案】(1) (2) 年利潤的預報值是1090.4

【解析】試題分析:(1)根據(jù)表中參考數(shù)據(jù)利用即可得解;

(2)結(jié)合(1)得,代入求解即可.

試題解析:

(1) ,

關于的回歸方程為

(2)依題意,

,

所以年利潤的預報值是1090.4.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

)求曲線在點處的切線方程;

)求證:“”是“函數(shù)有且只有一個零點” 的充分必要條件.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知數(shù)列為單調(diào)遞增數(shù)列,為其前項和,.

(1)求的通項公式;

(2)若,為數(shù)列的前項和,證明:.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù).

(1)當時,求函數(shù)的極值;

(2)若存在與函數(shù)的圖象都相切的直線,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知圓,考慮下列命題:①圓上的點到的距離的最小值為;②圓上存在點到點的距離與到直線的距離相等;③已知點,在圓上存在一點,使得以為直徑的圓與直線相切,其中真命題的個數(shù)為( )

A. 0 B. 1 C. 2 D. 3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】2018甘肅蘭州市高三一診已知圓 ,過且與圓相切的動圓圓心為

I)求點的軌跡的方程;

II)設過點的直線交曲線, 兩點,過點的直線交曲線 兩點,且,垂足為, , 為不同的四個點).

,證明:

求四邊形的面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在北上廣深等十余大中城市,一款叫“一度用車”的共享汽車給市民們提供了一種新型的出行方式.2020年,懷化也將出現(xiàn)共享汽車,用戶每次租車時按行駛里程(1元/公里)加用車時間(0.1元/分鐘)收費,李先生家離上班地點10公里,每天租用共享汽車上下班,由于堵車因素,每次路上開車花費的時間是一個隨機變量,根據(jù)一段時間統(tǒng)計40次路上開車花費時間在各時間段內(nèi)的情況如下:

時間(分鐘)

次數(shù)

8

14

8

8

2

以各時間段發(fā)生的頻率視為概率,假設每次路上開車花費的時間視為用車時間,范圍為分鐘.

(Ⅰ)若李先生上、下班時租用一次共享汽車路上開車不超過45分鐘,便是所有可選擇的交通工具中的一次最優(yōu)選擇,設4次使用共享汽車中最優(yōu)選擇的次數(shù),求的分布列和期望;

(Ⅱ)若李先生每天上下班使用共享汽車2次,一個月(以20天計算)平均用車費用大約是多少(同一時段,用該區(qū)間的中點值作代表).

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】

在平面直角坐標系中,曲線的參數(shù)方程是為參數(shù),),在以坐標原點為極點,軸的正半軸為極軸的極坐標系中,曲線的極坐標方程是,等邊的頂點都在上,且點,依逆時針次序排列,點的極坐標為.

(1)求點,,的直角坐標;

(2)設上任意一點,求點到直線距離的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線)的焦點是橢圓)的右焦點,且兩曲線有公共點

(1)求橢圓的方程;

(2)為坐標原點,,,是橢圓上不同的三點,并且的重心,試探究的面積是否為定值.若是,求出這個定值;若不是,請說明理由.

查看答案和解析>>

同步練習冊答案