(理)已知點(diǎn)A(4m,0)、B(m,0)(m是大于0的常數(shù)),動點(diǎn)P滿足=6m||.

(1)求點(diǎn)P的軌跡C的方程;

(2)點(diǎn)Q是軌跡C上一點(diǎn),過點(diǎn)Q的直線l交x軸于點(diǎn)F(-m,0),交y軸于點(diǎn)M,若||=2||,求直線l的斜率.

(文)已知橢圓的中心在坐標(biāo)原點(diǎn)O,焦點(diǎn)在x軸上,左焦點(diǎn)為F,左準(zhǔn)線與x軸的交點(diǎn)為M,.

(1)求橢圓的離心率e;

(2)過左焦點(diǎn)F且斜率為的直線與橢圓交于A、B兩點(diǎn),若=-2,求橢圓的方程.

(理)解:(1)設(shè)P(x,y),則=(-3m,0),=(x-4m,y),=(m-x,-y).               

,

∴-3m(x-4m)=6m.

則點(diǎn)P的軌跡C的方程為=1.                                    

(2)設(shè)Q(xQ,yQ),直線l:y=k(x+m),則點(diǎn)M(0,km).

當(dāng)時,由于F(-m,0),M(0,km),得

(xQ,yQ-km)=2(-m-xQ,-yQ).

xQ=,yQ=km.                                                       

又點(diǎn)Q()在橢圓上,所以=1.

解之,得k=±2.                                                          

當(dāng)時,xQ=-2m,yQ=-km.                                          

于是=1,解得k=0.                                             

故直線l的斜率是0,±2.                                                  

(文)解:(1)設(shè)橢圓方程為,F(-c,0),M(,0).

,有(,0)=4(-c,0).                                         

則有=4c,即.

∴e=.                                                              

(2)設(shè)直線AB的方程為y=(x+c),直線AB與橢圓的交點(diǎn)為A(x1,y1),B(x2,y2).

由(1)可得a2=4c2,b2=3c2.

消去y,得11x2+16cx-4c2=0.                                                   

x1+x2=,x1x2=c2.

=(x1,y1)·(x2,y2)=x1x2+y1y2,

且y1·y2=2(x1+c)(x2+c)=2x1x2+2c(x1+x2)+2c2.

∴3x1x2+2c(x1+x2)+2c2=-2,                                                   

c2+2c2=-2.

∴c2=1.則a2=4,b2=3.

橢圓的方程為=1.

練習(xí)冊系列答案
相關(guān)習(xí)題

同步練習(xí)冊答案