設(shè)數(shù)列{an}前n項(xiàng)和Sn=Aqn+B,則A+B=0是使{an}成為公比不等于1的等比數(shù)列的(  )
分析:已知{an}成為公比不等于1的等比數(shù)列,可得出A+B=0,推斷A+B=0是使{an}成為公比不等于1的等比數(shù)列的必要條件;數(shù)列{an}前n項(xiàng)和Sn=Aqn+B,A+B=0,得到⇒{an}成為公比不等于1的等比數(shù)列,可推斷A+B=0是使{an}成為公比不等于1的等比數(shù)列的充分條件.從而得出正確答案.
解答:解:(1)已知{an}成為公比不等于1的等比數(shù)列,則
Sn=
a 1(1-q n)
1-q
=
a 1
1-q
-
a 1q n
1-q
,比照Sn=Aqn+B,得
A=
a 1
1-q
,B=-
a 1
1-q

故A+B=0,
(2)若已知:數(shù)列{an}前n項(xiàng)和Sn=Aqn+B,A+B=0,則
a1=S1=Aq+B=A(q-1),
n>1時(shí) an=Sn-Sn-1=aAqn+B-[Aqn-1+B]=Aqn-1(q-1),
⇒{an}成為公比不等于1的等比數(shù)列.
故A+B=0是使{an}成為公比不等于1的等比數(shù)列的充要條件.
故選C.
點(diǎn)評:本小題主要考查必要條件、充分條件與充要條件的判斷、等比數(shù)列等基礎(chǔ)知識,考查運(yùn)算求解能力與轉(zhuǎn)化思想.屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an} 前n項(xiàng)和Sn=
n(an+1)2
,n∈N*且a2=a
,
(1)求數(shù)列{an} 的通項(xiàng)公式an
(2)若a=3,Tn=a1a2-a2a3+a3a4-a4a5+…+(-1)n-1anan+1,求T100的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項(xiàng)和Sn,且Sn=2an-2,n∈N+
(Ⅰ)試求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)cn=
nan
,求數(shù)列{cn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項(xiàng)和為Sn,且(3-m)Sn+2man=m+3(n∈N*).其中m為實(shí)常數(shù),m≠-3且m≠0.
(1)求證:{an}是等比數(shù)列;
(2)若數(shù)列{an}的公比滿足q=f(m)且b1=a1,bn=
3
2
f(bn-1)(n∈N*,n≥2)
,求{bn}的通項(xiàng)公式;
(3)若m=1時(shí),設(shè)Tn=a1+2a2+3a3+…+nan(n∈N*),是否存在最大的正整數(shù)k,使得對任意n∈N*均有Tn
k
8
成立,若存在求出k的值,若不存在請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項(xiàng)和為Sn,已知a1=a(a≠4),an+1=2Sn+4n(n∈N*
(Ⅰ)設(shè)b n=Sn-4n,求證:數(shù)列{bn}是等比數(shù)列;
(Ⅱ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅲ)若an+1≥an(n∈N*),求實(shí)數(shù)a取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}前n項(xiàng)和為Sn,首項(xiàng)為x(x∈R),滿足Sn=nan-
n(n-1)2
,n∈N+
(1)求證:數(shù)列{an}為等差數(shù)列;
(2)求證:若數(shù)列{an}中存在三項(xiàng)構(gòu)成等比數(shù)列,則x為有理數(shù).

查看答案和解析>>

同步練習(xí)冊答案