精英家教網 > 高中數學 > 題目詳情
數列{an}滿足:a1=1,a2=2012,且an=
an-1
an-2
,則a2012
=( 。
分析:由a1=1,a2=2012,且an=
an-1
an-2
,列舉出數列的前若干項,分析出數列{an}的通項變化的規(guī)律,進而可得答案.
解答:解:∵a1=1,a2=2012,且an=
an-1
an-2

當n=3時,a3=
a2
a1
=2012
當n=4時,a4=
a3
a2
=1
當n=5時,a5=
a4
a3
=
1
2012

當n=6時,a6=
a5
a4
=
1
2012

當n=7時,a7=
a6
a5
=1
當n=8時,a8=
a7
a6
=2012

即數列{an}的通項以6為周期呈周期性變化
∵2012÷6=335…2
故a2012=a2=2012
故選B
點評:本題考查的知識點是數列的函數特征,其中根據已知分析出數列的通項變化的周期性是解答的關鍵.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設數列{an}滿足a1=a,an+1=can+1-c(n∈N*),其中a,c為實數,且c≠0.
(Ⅰ)求數列{an}的通項公式;
(Ⅱ)設a=
1
2
,c=
1
2
,bn=n(1-an)(n∈N*)
,求數列{bn}的前n項和Sn

查看答案和解析>>

科目:高中數學 來源: 題型:

數列{an}滿足a1=a,an+1=
an+3
2
,n=1,2,3,….
(Ⅰ)若an+1=an,求a的值;
(Ⅱ)當a=
1
2
時,證明:an
3
2

(Ⅲ)設數列{an-1}的前n項之積為Tn.若對任意正整數n,總有(an+1)Tn≤6成立,求a的取值范圍.

查看答案和解析>>

科目:高中數學 來源: 題型:

(2011•天津模擬)設數列{an}滿足a1=a,an+1=can+1-c(n∈N*),其中a,c為實數,且c≠0.
(1)求證:a≠1時數列{an-1}是等比數列,并求an;
(2)設a=
1
2
c=
1
2
,bn=n(1-an)(n∈N*)
,求數列{bn}的前n項和Sn;
(3)設a=
3
4
,c=-
1
4
,cn=
3+an
2-an
(n∈N*),記dn=c2n-c2n-1(n∈N*)
,設數列{dn}的前n項和為Tn,求證:對任意正整數n都有Tn
5
3

查看答案和解析>>

科目:高中數學 來源: 題型:

(2009•大連二模)已知a為實數,數列{an}滿足a1=a,當n≥2時,an=
an-1-4 (an-1>4)
5-an-1 (an-1≤4)

(I)當a=200時,填寫下列表格;
N 2 3 51 200
an
(II)當a=200時,求數列{an}的前200項的和S200;
(III)令b n=
an
(-2)n
,Tn=b1+b2…+bn求證:當1<a<
5
3
時,T n
5-3a
3

查看答案和解析>>

科目:高中數學 來源: 題型:

已知常數a、b都是正整數,函數f(x)=
x
bx+1
(x>0),數列{an}滿足a1=a,
1
an+1
=f(
1
an
)
(n∈N*
(1)求數列{an}的通項公式;
(2)若a=8b,且等比數列{bn}同時滿足:①b1=a1,b2=a5;②數列{bn}的每一項都是數列{an}中的某一項.試判斷數列{bn}是有窮數列或是無窮數列,并簡要說明理由;
(3)對問題(2)繼續(xù)探究,若b2=am(m>1,m是常數),當m取何正整數時,數列{bn}是有窮數列;當m取何正整數時,數列{bn}是無窮數列,并說明理由.

查看答案和解析>>

同步練習冊答案