解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

如圖,四棱錐中,底面,,與底面角,點(diǎn)分別是的中點(diǎn).

(1)

求證:平面;

(2)

求二面角的大;

(3)

當(dāng)時,求異面直線所成的角.

答案:
解析:

(1)

證明:∵底面,底面,∴

又∵平面,平面,,

平面;4分

(2)

解:∵點(diǎn)分別是的中點(diǎn),

,由(Ⅰ)知平面,∴平面,

,

為二面角的平面角,7分

底面,

與底面所成的角即為,

,

為直角三角形斜邊的中點(diǎn),

為等腰三角形,且,

,∴二面角的大小為;9分

(3)

  解法1:過點(diǎn)于點(diǎn),則或其補(bǔ)角即為異面直線所成的角,11分

的中點(diǎn),∴為為的中點(diǎn),設(shè),則由,又,∴ ∴,∴,

∴由(Ⅱ)知為直角三角形,且,

,∴,

在直角三角形中,,

,

∴在三角形中,,13分

為直角三角形,為直角,

∴異面直線所成的角為14分

或者用三垂線定理,首先證明DB與BC垂直也可以

因?yàn)?IMG style="vertical-align:middle" SRC="http://thumb.zyjl.cn/pic7/pages/60A2/0347/0018/672dd308815279a893bcd7450f61caad/C/Image136.gif" width=85 height=41> ∴,又,

所以,即DB與BC垂直

  法2:以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖的直角坐標(biāo)系,設(shè),則,,,則

,,

,∴異面直線所成的角為……………14分


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:山西省實(shí)驗(yàn)中學(xué)2006-2007學(xué)年度第一學(xué)期高三年級第三次月考 數(shù)學(xué)試題 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟

(1)

(理)已知數(shù)列相鄰兩項(xiàng)an,an+1是方程的兩根(n∈N+)且a1=2,Sn=c1+c2+…+cn,求an與S2n

(2)

(文)已知f(x)=x2-4x+3,又f(x-1),,f(x)是一個遞增等差數(shù)列{an}的前3項(xiàng)

(1)求此數(shù)列的通項(xiàng)公式

(2)求a2+a5+a8+…+a26的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省信陽市商城高中2006-2007學(xué)年度高三數(shù)學(xué)單元測試、不等式二 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

證明下列不等式:

(文)若x,y,z∈R,a,b,c∈R+,則z2≥2(xyyzzx)

(理)若x,y,z∈R+,且xyzxyz,則≥2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:河南省信陽市商城高中2006-2007學(xué)年度高三數(shù)學(xué)單元測試、不等式二 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

設(shè)f(x)=3ax2+2bx+c,若a+b+c=0,f(0)>0,f(1)>0,求證:

(1)

方程f(x)=0有實(shí)根.

(2)

a>0且-2<<-1;

(3)

(理)方程f(x)=0在(0,1)內(nèi)有兩個實(shí)根.

(文)設(shè)x1,x2是方程f(x)=0的兩個實(shí)根,則

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學(xué)沖刺預(yù)測卷(四)附答案 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

已知函數(shù)f(x)的圖像與函數(shù)的圖像關(guān)于點(diǎn)A(0,1)對稱.

(1)求f(x)的解析式;

(2)(文)若g(x)=f(x)·x+ax,且g(x)在區(qū)間(0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍;

(理)若,且g(x)在區(qū)間(0,2]上為減函數(shù),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:四川省成都市名校聯(lián)盟2008年高考數(shù)學(xué)沖刺預(yù)測卷(四)附答案 題型:044

解答題:解答應(yīng)寫出文字說明,證明過程或演算步驟.

如圖,直角梯形ABCD中∠DAB=90°,ADBC,AB=2,AD,BC.橢圓CA、B為焦點(diǎn)且經(jīng)過點(diǎn)D

(1)建立適當(dāng)坐標(biāo)系,求橢圓C的方程;

(2)(文)是否存在直線l與橢圓C交于M、N兩點(diǎn),且線段MN的中點(diǎn)為C,若存在,求l與直線AB的夾角,若不存在,說明理由.

(理)若點(diǎn)E滿足,問是否存在不平行AB的直線l與橢圓C交于M、N兩點(diǎn)且|ME|=|NE|,若存在,求出直線lAB夾角的范圍,若不存在,說明理由.

查看答案和解析>>

同步練習(xí)冊答案