精英家教網 > 高中數學 > 題目詳情
設等差數列{an}的前n項和為Sn,已知(a7-1)3+2012(a7-1)=1(a2006-1)3+2012(a2006-1)=-1,則S2012=
2012
2012
分析:設f(x)=x3+2012x,則f(x)在R上是增函數,且是奇函數,由條件可得 f(a7-1)=1,f(a2006-1)=-1,由此推出a7+a2006=2.再由等差數列的前n項和公式求出結果.
解答:解:設f(x)=x3+2012x,則f(x)在R上是增函數,且是奇函數,由條件可得 f(a7-1)=1,f(a2006-1)=-1.
∴f(a7-1)+f(a2006-1)=0,f(a7-1)>f(a2006-1),
∴a7-1+a2006-1=0,∴a7-1>a2006-1且 a7+a2006=2.
∴S2012 =
2002×(12012)
2
=
2002×(72006)
2
=2012,
故答案為 2012.
點評:本題主要考查等差數列的定義和性質,等差數列的通項公式,等差數列的前n項和公式的應用,屬于中檔題.
練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

設等差數列{an}的前n項和為Sn.若S2k=72,且ak+1=18-ak,則正整數k=
 

查看答案和解析>>

科目:高中數學 來源: 題型:

(2013•山東)設等差數列{an}的前n項和為Sn,且S4=4S2,a2n=2an+1.
(1)求數列{an}的通項公式;
(2)設數列{bn}的前n項和為TnTn+
an+12n
(λ為常數).令cn=b2n(n∈N)求數列{cn}的前n項和Rn

查看答案和解析>>

科目:高中數學 來源: 題型:

設等差數列{an}的前n項之和為Sn滿足S10-S5=20,那么a8=
4
4

查看答案和解析>>

科目:高中數學 來源: 題型:

設等差數列{an}的前n項和為Sn,已知(a4-1)3+2012(a4-1)=1,(a2009-1)3+2012(a2009-1)=-1,則下列結論中正確的是(  )

查看答案和解析>>

科目:高中數學 來源: 題型:

設等差數列{an}的前n項和為Sn,若S9=81,S6=36,則S3=(  )

查看答案和解析>>

同步練習冊答案