【題目】已知函數(shù)是奇函數(shù).
(1)求實數(shù)的值;
(2)用定義證明函數(shù)在上的單調(diào)性;
(3)若對任意的,不等式恒成立,求實數(shù)的取值范圍.
【答案】(1)(2)見解析(3)
【解析】試題分析:(1)由奇函數(shù)性質(zhì)得,解得.注意驗證(2)注意設(shè)時兩數(shù)的任意性,作差要進行因式分解,提取公因式,最后確定各個因子符號,得差的符號,確定單調(diào)性(3)根據(jù)奇偶性將不等式轉(zhuǎn)化為,再根據(jù)函數(shù)單調(diào)性得,利用參變分離轉(zhuǎn)化為對應函數(shù)最值問題:最小值,由二次函數(shù)單調(diào)性確定最小值,即得實數(shù)的取值范圍.
試題解析:解:(1)∵函數(shù)的定義域為,且是奇函數(shù),
∴,解得.
此時,滿足,即是奇函數(shù).
∴.
(2)任取,且,則,,
于是 ,
即,故函數(shù)在上是增函數(shù).
(3)由及是奇函數(shù),知,
又由在上是增函數(shù),得,即對任意的恒成立,
∵當時,取最小值,∴.
科目:高中數(shù)學 來源: 題型:
【題目】已知△ABC中,內(nèi)角A,B,C所對的邊分別為,b,c,且acosC+ c=b,若a=1, c﹣2b=1,則角C為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知數(shù)列{an}: , + , + + , + + + ,…,那么數(shù)列{bn}={ }的前n項和為( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知關(guān)于x的不等式ax2﹣3x+2>0的解集為{x|x<1或x>b}
(1)求實數(shù)a、b的值;
(2)解關(guān)于x的不等式 >0(c為常數(shù))
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)的一條對稱軸為,且最高點的縱坐標是.
(1)求的最小值及此時函數(shù)的最小正周期、初相;
(2)在(1)的情況下,設(shè),求函數(shù)在上的最大值和最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù)f(x)=bax(a,b為常數(shù)且a>0,a≠1)的圖象經(jīng)過點A(1,8),B(3,32)
(1)試求a,b的值;
(2)若不等式( )x+( )x﹣m≥0在x∈(﹣∞,1]時恒成立,求實數(shù)m的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知集合M={1,2,3,4,5,6,7,8,9,10,11,12},以下命題正確的序號是 .
①如果函數(shù)f(x)=x(x﹣a1)(x﹣a2)…(x﹣a7),其中ai∈M(i=1,2,3,…,7),那么f′(0)的最大值為127 .
②數(shù)列{an}滿足首項a1=2,ak+12﹣ak2=2,k∈N* , 當n∈M且n最大時,數(shù)列{an}有2048個.
③數(shù)列{an}(n=1,2,3,…,8)滿足a1=5,a8=7,|ak+1﹣ak|=2,k∈N* , 如果數(shù)列{an}中的每一項都是集合M的元素,則符合這些條件的不同數(shù)列{an}一共有33個.
④已知直線amx+any+ak=0,其中am , an , ak∈M,而且am<an<ak , 則一共可以得到不同的直線196條.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知定點,圓C: ,
(1)過點向圓C引切線l,求切線l的方程;
(2)過點A作直線 交圓C于P,Q,且,求直線的斜率k;
(3)定點M,N在直線 上,對于圓C上任意一點R都滿足,試求M,N兩點的坐標.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】某校高一年級共有1000名學生,其中男生400名,女生600名,該校組織了一次口語模擬考試(滿分為100分).為研究這次口語考試成績?yōu)楦叻郑?0分以上(含80分)為高分)是否與性別有關(guān),現(xiàn)按性別采用分層抽樣的方法抽取100名學生的成績,按從低到高分成七組,并繪制成如圖所示的頻率分布直方圖.已知區(qū)間上的頻率等于區(qū)間上頻率,區(qū)間上的頻率與區(qū)間上的頻率之比為.
0.010 | 0.050 | 0.025 | 0.010 | 0.001 | |
6.635 | 3.841 | 5.024 | 6.635 | 10.828 |
(1)估計該校高一年級學生在口語考試中,成績?yōu)楦叻值娜藬?shù);
(2)請你根據(jù)已知條件將下列列聯(lián)表補充完整,并判斷是否有的把握認為“該校高一年級學生在本次考試中口語成績及格(60分以上(含60分)為及格)與性別有關(guān)”.
附:
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com