【題目】已知平面向量,滿(mǎn)足,若對(duì)每一個(gè)確定的向量,記的最小值為,則當(dāng)變化時(shí),的最大值為(

A.B.C.D.1

【答案】B

【解析】

根據(jù)題意,建立平面直角坐標(biāo)系..中點(diǎn).即可求得點(diǎn)的軌跡方程.變形,結(jié)合及平面向量基本定理可知三點(diǎn)共線.由圓切線的性質(zhì)可知的最小值即為到直線的距離最小值,且當(dāng)與圓相切時(shí),有最大值.利用圓的切線性質(zhì)及點(diǎn)到直線距離公式即可求得直線方程,進(jìn)而求得原點(diǎn)到直線的距離,即為的最大值.

根據(jù)題意,設(shè),

代入可得

點(diǎn)的軌跡方程為

又因?yàn)?/span>,變形可得,,

所以由平面向量基本定理可知三點(diǎn)共線,如下圖所示:

所以的最小值即為到直線的距離最小值

根據(jù)圓的切線性質(zhì)可知,當(dāng)與圓相切時(shí),有最大值

設(shè)切線的方程為,化簡(jiǎn)可得

由切線性質(zhì)及點(diǎn)到直線距離公式可得,化簡(jiǎn)可得

所以切線方程為

所以當(dāng)變化時(shí), 到直線的最大值為

的最大值為

故選:B

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四棱錐P﹣ABCD中,底面ABCD是一個(gè)菱形,三角形PAD是一個(gè)等腰三角形,∠BAD=∠PAD=,點(diǎn)E在線段PC上,且PE=3EC.

(1)求證:AD⊥PB;

(2)若平面PAD⊥平面ABCD,求二面角E﹣AB﹣P的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】拋擲兩顆骰子,計(jì)算:

1)事件兩顆骰子點(diǎn)數(shù)相同的概率;

2)事件點(diǎn)數(shù)之和小于7”的概率;

3)事件點(diǎn)數(shù)之和等于或大于11”的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在△ABC中,角A,B,C所對(duì)的邊分別為ab,c,且abc=8.

(1)若a=2,b,求cosC的值;

(2)若sinAcos2+sinB·cos2=2sinC,且△ABC的面積SsinC,求ab的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù).

1)判斷的奇偶性,并證明;

2)用定義證明函數(shù)上單調(diào)遞減;

3)若,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),若對(duì)任意的,都存在,使得,則實(shí)數(shù)的取值范圍是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,已知矩形的長(zhǎng)為2,寬為1, , 邊分別在軸、軸的正半軸上, 點(diǎn)與坐標(biāo)原點(diǎn)重合,將矩形折疊,使點(diǎn)落在線段上,設(shè)此點(diǎn)為.

(1)若折痕的斜率為-1,求折痕所在的直線的方程;

(2)若折痕所在直線的斜率為,( 為常數(shù)),試用表示點(diǎn)的坐標(biāo),并求折痕所在的直線的方程;

(3)當(dāng)時(shí),求折痕長(zhǎng)的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】《數(shù)書(shū)九章》是中國(guó)南宋時(shí)期杰出數(shù)學(xué)家秦九韶的著作,其中在卷五“三斜求積”中提出了已知三角形三邊、、,求面積的公式,這與古希臘的海倫公式完全等價(jià),其求法是“以小斜冥并大斜冥減中斜冥,余半之,自乘于上,以小斜冥乘大斜冥減上,余四約之,為實(shí).一為從隅,開(kāi)平方得積”若把以上這段文字寫(xiě)出公式,即若,則

(1)已知的三邊,,且,求證:的面積

(2)若,,求的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,方程,為不相等的兩個(gè)正數(shù))所代表的曲線是( )

A. 三角形 B. 正方形 C. 非正方形的長(zhǎng)方形 D. 非正方形的菱形

查看答案和解析>>

同步練習(xí)冊(cè)答案