如圖,已知雙曲線=1(a>0,b>0),其右準(zhǔn)線交x軸于點(diǎn)A,雙曲線虛軸的下端點(diǎn)為B,過雙曲線的右焦點(diǎn)F(c,0)作垂直于x軸的直線交雙曲線于點(diǎn)P,直線ABPF于點(diǎn)D,且點(diǎn)D滿足(O為原點(diǎn)).

(1)求雙曲線的離心率;

(2)若a=2,過點(diǎn)B的直線l交雙曲線于M、N兩點(diǎn),問在y軸上是否存在定點(diǎn)C使為常數(shù)?若存在,求出C點(diǎn)的坐標(biāo);若不存在,請(qǐng)說明理由.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:導(dǎo)學(xué)大課堂選修數(shù)學(xué)1-1蘇教版 蘇教版 題型:044

已知雙曲線=1,F(xiàn)為其右焦點(diǎn),A(4,1)為平面上一點(diǎn),點(diǎn)P為雙曲線上一點(diǎn),求|PA|+|PF|的最小值(如圖).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2010年普通高等學(xué)校招生全國(guó)統(tǒng)一考試、理科數(shù)學(xué)(山東卷) 題型:044

如圖,已知橢圓=1(a>b>0)的離心率為.以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1,F(xiàn)2為頂點(diǎn)的三角形的周長(zhǎng)為4(+1),一等軸雙曲線的頂點(diǎn)時(shí)該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn).直線PF1和PF2與橢圓的焦點(diǎn)分別為A、B和C、D.

(Ⅰ)求橢圓和雙曲線的標(biāo)準(zhǔn)方程:

(Ⅱ)設(shè)直線PF1、PF2的斜率分別為k1,k2,證明:k1·k2l;

(Ⅲ)是否存在常數(shù),使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在.求λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年河北省高三3月月考數(shù)學(xué)試卷(解析版) 題型:解答題

如圖,已知橢圓=1(a>b>0)的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長(zhǎng)為4(+1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1和PF2與橢圓的交點(diǎn)分別為A、B和C、D.

(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

(2)設(shè)直線PF1、PF2的斜率分別為k1、k2,證明:k1·k2=1;

(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請(qǐng)說明理由.

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,已知橢圓=1(ab>0)的離心率為,以該橢圓上的點(diǎn)和橢圓的左、右焦點(diǎn)F1、F2為頂點(diǎn)的三角形的周長(zhǎng)為4(+1),一等軸雙曲線的頂點(diǎn)是該橢圓的焦點(diǎn),設(shè)P為該雙曲線上異于頂點(diǎn)的任一點(diǎn),直線PF1PF2與橢圓的交點(diǎn)分別為A、BC、D.

(1)求橢圓和雙曲線的標(biāo)準(zhǔn)方程;

(2)設(shè)直線PF1、PF2的斜率分別為k1k2,證明:k1·k2=1;

(3)是否存在常數(shù)λ,使得|AB|+|CD|=λ|AB|·|CD|恒成立?若存在,求λ的值;若不存在,請(qǐng)說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案