如圖,已知直線的右焦點F,且交橢圓CA,B兩點,點A,F,B在直線上的射影依次為點D,KE.

   (1)若拋物線的焦點為橢圓C的上頂點,求橢圓C的方程;

   (2)對于(1)中的橢圓C,若直線Ly軸于點M,且,當(dāng)m變化時,求的值;

   (3)連接AEBD,試探索當(dāng)m變化時,直線AEBD是否相交于一定點N?若交于定點N,請求出N點的坐標(biāo),并給予證明;否則說明理由.

(1)(2)(3)AEBD相交于定點


解析:

(1)易知

        

         ………………2分

   (2)

         設(shè)

        

         …………………………………………4分

         又由

        

         同理

        

         ……………………………………6分

   (3)

         先探索,當(dāng)m=0時,直線Lox軸,則ABED為矩形,由對稱性知,AEBD相交FK中點N,且

         猜想:當(dāng)m變化時,AEBD相交于定點……………………8分

         證明:設(shè)

         當(dāng)m變化時首先AE過定點N

        

        

         A、NE三點共線

         同理可得B、N、D三點共線

         ∴AEBD相交于定點……………………12分

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)系xOy中,已知橢圓C:
y2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,左右兩個焦分別為F1、F2.過右焦點F2且與軸垂直的
直線與橢圓C相交M、N兩點,且|MN|=1.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)橢圓C的左頂點為A,下頂點為B,動點P滿足
PA
AB
=m-4,(m∈R)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省揭陽市2007年高中畢業(yè)班第一次高考模擬考試題(文科) 題型:044

如圖,在直角坐標(biāo)系xOy中,已知橢圓的離心率e=,

左右兩個焦分別為F1、F2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=2.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)橢圓C的一個頂點為B(0,-b),是否存在直線l:y=x+m,使點B關(guān)于直線l的對稱點落在橢圓C上,若存在,求出直線l的方程,若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:廣東省揭陽市2007年高中畢業(yè)班第一次高考模擬考試題(理科) 題型:044

如圖,在直角坐標(biāo)系xOy中,已知橢圓的離心率e=,左右兩個焦分別為F1、F2.過右焦點F2且與x軸垂直的直線與橢圓C相交M、N兩點,且|MN|=1.

(Ⅰ)求橢圓C的方程;

(Ⅱ)設(shè)橢圓C的左頂點為A,下頂點為B,動點P滿足,()試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓C上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的

直線與橢圓相交M、N兩點,且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設(shè)橢圓的左頂點為A,下頂點為B,動點P滿足,

)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓上.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在直角坐標(biāo)系中,已知橢圓的離心率e=,左右兩個焦分別為.過右焦點且與軸垂直的

直線與橢圓相交M、N兩點,且|MN|=1.

(Ⅰ) 求橢圓的方程;

(Ⅱ) 設(shè)橢圓的左頂點為A,下頂點為B,動點P滿足,

)試求點P的軌跡方程,使點B關(guān)于該軌跡的對稱點落在橢圓上.

查看答案和解析>>

同步練習(xí)冊答案