(12分)(2011•福建)設(shè)函數(shù)f(θ)=,其中,角θ的頂點(diǎn)與坐標(biāo)原點(diǎn)重合,始邊與x軸非負(fù)半軸重合,終邊經(jīng)過(guò)點(diǎn)P(x,y),且0≤θ≤π.
(Ⅰ)若點(diǎn)P的坐標(biāo)為,求f(θ)的值;
(Ⅱ)若點(diǎn)P(x,y)為平面區(qū)域Ω:上的一個(gè)動(dòng)點(diǎn),試確定角θ的取值范圍,并求函數(shù)f(θ)的最小值和最大值.
(Ⅰ)2(Ⅱ)時(shí),f(θ)取得最大值2;θ=0時(shí),f(θ)取得最小值1

試題分析:(I)由已知中函數(shù)f(θ)=,我們將點(diǎn)P的坐標(biāo)代入函數(shù)解析式,即可求出結(jié)果.
(II)畫(huà)出滿足約束條件的平面區(qū)域,數(shù)形結(jié)合易判斷出θ角的取值范圍,結(jié)合正弦型函數(shù)的性質(zhì)我們即可求出函數(shù)f(θ)的最小值和最大值.
解(I)由點(diǎn)P的坐標(biāo)和三角函數(shù)的定義可得:

于是f(θ)===2
(II)作出平面區(qū)域Ω(即感觸區(qū)域ABC)如圖所示
其中A(1,0),B(1,1),C(0,1)
于是0≤θ≤
∴f(θ)==

故當(dāng),即時(shí),f(θ)取得最大值2
當(dāng),即θ=0時(shí),f(θ)取得最小值1

點(diǎn)評(píng):本題主要考查三角函數(shù)、不等式等基礎(chǔ)知識(shí),考查運(yùn)算求解能力、推理論證能力,考查函數(shù)與方程思想、數(shù)形結(jié)合思想、化歸與轉(zhuǎn)化思想.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知定義域?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824050856790359.png" style="vertical-align:middle;" />的函數(shù)同時(shí)滿足以下三個(gè)條件:
(1) 對(duì)任意的,總有;(2);(3) 若,,且,則有成立,則稱為“友誼函數(shù)”,請(qǐng)解答下列各題:
(1)若已知為“友誼函數(shù)”,求的值;
(2)函數(shù)在區(qū)間上是否為“友誼函數(shù)”?并給出理由.
(3)已知為“友誼函數(shù)”,假定存在,使得, 求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

經(jīng)過(guò)長(zhǎng)期觀測(cè)得到:在交通繁忙的時(shí)段內(nèi),某公路段汽車(chē)的車(chē)流量(千輛/時(shí))與汽車(chē)的平均速度(千米/時(shí))之間的函數(shù)關(guān)系為).
(1)在該時(shí)段內(nèi),當(dāng)汽車(chē)的平均速度為多少時(shí),車(chē)流量最大?最大車(chē)流量為多少?
(2)若要求在該時(shí)段內(nèi)車(chē)流量超過(guò)千輛/時(shí),則汽車(chē)的平均速度應(yīng)在什么范圍內(nèi)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)a>0,函數(shù)f(x)=x+,g(x)=x-ln x,若對(duì)任意的x1,x2∈[1,e],都有f(x1)≥g(x2)成立,則實(shí)數(shù)a的取值范圍為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù)f(x)滿足f(x)=1+flog2x,則f(2)=________.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

[2012·江蘇高考]已知函數(shù)f(x)=x2+ax+b(a,b∈R)的值域?yàn)閇0,+∞),若關(guān)于x的不等式f(x)<c的解集為(m,m+6),則實(shí)數(shù)c的值為_(kāi)_______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)定義在上,對(duì)任意的,,且.
(1)求,并證明:;
(2)若單調(diào),且.設(shè)向量,對(duì)任意恒成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知.
(1)當(dāng),時(shí),若不等式恒成立,求的范圍;
(2)試判斷函數(shù)內(nèi)零點(diǎn)的個(gè)數(shù),并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,某機(jī)場(chǎng)建在一個(gè)海灣的半島上,飛機(jī)跑道AB的長(zhǎng)為4.5km,且跑道所在的直線與海岸線l的夾角為60o(海岸線可以看作是直線),跑道上離海岸線距離最近的點(diǎn)B到海岸線的距離BC=4km.D為海灣一側(cè)海岸線CT上的一點(diǎn),設(shè)CD=x(km),點(diǎn)D對(duì)跑道AB的視角為q.
(1)將tanq表示為x的函數(shù);
(2)求點(diǎn)D的位置,使q取得最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案