|
|
將函數(shù)y=sinx的圖象向左平移個單位,得到函數(shù)y=f(x)的函數(shù)圖象,則下列說法正確的是
|
[ ] |
A. |
y=f(x)是奇函數(shù)
|
B. |
y=f(x)的周期是π
|
C. |
3y=f(x)的圖象關(guān)于直線x=對稱
|
D. |
y=f(x)的圖象關(guān)于點(diǎn)(-,0)
|
|
|
答案:D
解析:
|
將函數(shù)y=sinx的圖象向左平移個單位,得y=sin(x+)=cosx.
即f(x)=cosx.∴f(x)是周期為2π的偶函數(shù),選項A,B錯誤;
∵cos=cos(﹣)=0,
∴y=f(x)的圖象關(guān)于點(diǎn)(﹣,0)、(,0)成中心對稱.故選:D.
|
練習(xí)冊系列答案
相關(guān)習(xí)題
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
設(shè),則z的共軛復(fù)數(shù)為
|
[ ] |
A. |
-1+3i
|
B. |
-1-3i
|
C. |
1+3i
|
D. |
1-3i
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
已知橢圓的一個焦點(diǎn)為,離心率為
(1)求橢圓C的標(biāo)準(zhǔn)方程;
(2)若動點(diǎn)P(x0,y0)為橢圓C外一點(diǎn),且點(diǎn)P到橢圓的兩條切線相互垂直,求點(diǎn)P的軌跡方程.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
復(fù)數(shù)(3+2i)i等于
|
[ ] |
A. |
-2-3i
|
B. |
-2+3i
|
C. |
2-3i
|
D. |
2+3i
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
在平面直角坐標(biāo)系中,兩點(diǎn)P1(x1,y1),P2(x2,y2)間的“L-距離”定義為||P1P2|=|x1-x2|=|y1-y2||則平面內(nèi)與x軸上兩個不同的定點(diǎn)F1,F(xiàn)2的“L-距離”之和等于定值(大于||F1F2|)的點(diǎn)的軌跡可以是
|
[ ] |
A. |
|
B. |
|
C. |
|
D. |
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
如圖,三棱錐A-BCD中,AB⊥BCD,CD⊥BD.
(1)求證:CD⊥平面ABD;
(2)若AB=BD=CD=1,M為AD中點(diǎn),求三棱錐A-MBC的體積.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
如圖,在邊長為e(e為自然對數(shù)的底數(shù))的正方形中隨機(jī)撒一粒黃豆,則他落到陰影部分的概率為________.
|
|
|
查看答案和解析>>
科目:高中數(shù)學(xué)
來源:課標(biāo)綜合版 專題復(fù)習(xí)
題型:
|
|
若等差數(shù)列{an}滿足a7+a8+a9>0,a7+a10<0,則當(dāng)n=________時{an}的前n項和最大.
|
|
|
查看答案和解析>>