以過橢圓
x2
a2
+
y2
b2
=1(a>b>0)的右焦點(diǎn)的弦為直徑的圓與其右準(zhǔn)線的位置關(guān)系是( 。
分析:根據(jù)圓錐曲線的統(tǒng)一定義,可得過橢圓右焦點(diǎn)F的弦AB中點(diǎn)為M,且M到右準(zhǔn)線l的距離大于圓的半徑,由此可得該圓與右準(zhǔn)線l的位置.
解答:解:設(shè)過右焦點(diǎn)F的弦為AB,右準(zhǔn)線為l,A、B在l上的射影分別為C、D
連接AC、BD,設(shè)AB的中點(diǎn)為M,作MN⊥l于N
根據(jù)圓錐曲線的統(tǒng)一定義,可得
|AF|
|AC|
=
|BF|
|BD|
=e,可得
|AF|+|BF|
|AC|+|BD|
=e<1

∴|AF|+|BF|<|AC|+|BD|,即|AB|<|AC|+|BD|,
∵以AB為直徑的圓半徑為r=
1
2
|AB|,|MN|=
1
2
(|AC|+|BD|)
∴圓M到l的距離|MN|>r,可得直線l與以AB為直徑的圓相離
故選:C
點(diǎn)評(píng):本題給出橢圓的右焦點(diǎn)F,求以經(jīng)過F的弦AB為直徑的圓與右準(zhǔn)線的位置關(guān)系,著重考查了橢圓的簡單幾何性質(zhì)、圓錐曲線的統(tǒng)一定義和直線與圓的位置關(guān)系等知識(shí),屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

(2013•東城區(qū)二模)已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率e=
3
2
,原點(diǎn)到過A(a,0),B(0,-b)兩點(diǎn)的直線的距離是
4
5
5

(1)求橢圓的方程;
(2)已知直線y=kx+1(k≠0)交橢圓于不同的兩點(diǎn)E,F(xiàn),且E,F(xiàn)都在以B為圓心的圓上,求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
6
3
,長軸長為2
3

(1)求橢圓的方程;
(2)試直線y=kx+1交橢圓于不同的兩點(diǎn)A、B,以AB為直徑的圓恰過原點(diǎn)O,求直線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2008•寶坻區(qū)一模)設(shè)直線l:y=x+1與橢圓
x2
a2
+
y2
b2
=1(a>b>0)相交于A、B兩個(gè)不同的點(diǎn),與x軸相交于點(diǎn)F.
(1)證明:a2+b2>1;
(2)若F是橢圓的一個(gè)焦點(diǎn),且以AB為直徑的圓過原點(diǎn),求a2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1,(a>b>0)
左、右焦點(diǎn)分別為F1(-c,0),F(xiàn)2(c,0),點(diǎn)A、B坐標(biāo)為A(a,0),B(0,b),若△ABC面積為
3
2
,∠BF2A=120°.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)若直線y=kx+2與橢圓交于不同的兩點(diǎn)M、N,且以MN為直徑的圓恰好過原點(diǎn),求實(shí)數(shù)k的取值;
(3)動(dòng)點(diǎn)P使得
F1P
F1F2
、
PF1
PF2
、
F2F
1
F2P
成公差小于零的等差數(shù)列,記θ為向量
PF1
PF2
的夾角,求θ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,橢圓
x2
a2
+
y2
b2
=1的兩焦點(diǎn)F1,F(xiàn)2與短軸兩端點(diǎn)B1,B2構(gòu)成∠B2F1B1為120°,面積為2
3
的菱形.
(1)求橢圓的方程;
(2)若直線l:y=kx+m與橢圓相交于M,N兩點(diǎn)(M,N不是左右頂點(diǎn)),且以MN為直徑的圓過橢圓右頂點(diǎn)A,求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

同步練習(xí)冊(cè)答案