分析:(1)當(dāng)n=1時(shí),a1=S1=2a1-4可求a1=4,當(dāng)n≥2時(shí),由an=Sn-Sn-1=2an-4-2an-1+4即an=2an-1,可得an,代入已知遞推公式可證
(2)Tn=1×2+2×22+…+n•2n,考慮利用錯位相減可求Tn
解答:解:(1)當(dāng)n=1時(shí),a
1=S
1=2a
1-4
∴a
1=4
當(dāng)n≥2時(shí),a
n=S
n-S
n-1=2a
n-4-2a
n-1+4
即a
n=2a
n-1∴
=2∴a
n=2
n+1
b
n+1=2
n+1+2b
n
∴
-=1又
=1∴
=1+(n-1)•1=n∴b
n=n•2
n(n∈N
*)
(2)T
n=1×2+2×2
2+…+n•2
n
2T
n=1×2
2+…+(n-1)•2
n+n•2
n+1兩式相減得 T
n=-2-2
2-…-2
n+n•2
n+1=
-+n•2n+1=(n-1)•2
n+1+2(n∈N
*).
點(diǎn)評:本題主要考查了利用數(shù)列的遞推公式求解數(shù)列的通項(xiàng)公式,解題的關(guān)鍵是構(gòu)造等差及等比數(shù)列進(jìn)行求解,要注意對錯位相減求解數(shù)列和的方法的掌握,這是數(shù)列求和中的重點(diǎn)和難點(diǎn).