在四棱錐P-ABCD中,∠ABC=∠ACD=90°,∠BAC=∠CAD=60°,PA⊥平面ABCD,E為PD的中點,PA=2AB=2.(Ⅰ)求四棱錐P-ABCD的體積V;
(Ⅱ)若F為PC的中點,求證PC⊥平面AEF;
(Ⅲ)求證CE∥平面PAB.
(Ⅰ) (Ⅱ) 略
解:(Ⅰ)在Rt△ABC中,AB=1,
∠BAC=60°,∴BC=,AC=2.
在Rt△ACD中,AC=2,∠CAD=60°,
∴CD=2,AD=4.
∴SABCD=
.……………… 3分
則V=. ……………… 4分
(Ⅱ)∵PA=CA,F為PC的中點,
∴AF⊥PC. ……………… 6分
∵PA⊥平面ABCD,∴PA⊥CD.
∵AC⊥CD,PA∩AC=A,
∴CD⊥平面PAC.∴CD⊥PC.
∵E為PD中點,F為PC中點,
∴EF∥CD.則EF⊥PC. ……… 8分
∵AF∩EF=F,∴PC⊥平面AEF.…… 9分
(Ⅲ)證法一:
取AD中點M,連EM,CM.則EM∥PA.
∵EM 平面PAB,PA平面PAB,
∴EM∥平面PAB. ……… 11分
在Rt△ACD中,∠CAD=60°,AC=AM=2,
∴∠ACM=60°.而∠BAC=60°,∴MC∥AB.
∵MC 平面PAB,AB平面PAB,
∴MC∥平面PAB. ……… 13分
∵EM∩MC=M,
∴平面EMC∥平面PAB.
∵EC平面EMC,
∴EC∥平面PAB. ……… 14分
證法二:
延長DC、AB,設它們交于點N,連PN.
∵∠NAC=∠DAC=60°,AC⊥CD,
∴C為ND的中點. ……11分
∵E為PD中點,∴EC∥PN.……13分
∵EC 平面PAB,PN 平面PAB,
∴EC∥平面PAB. ……… 14分
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
1 | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
(本小題滿分14分)在四棱錐P-ABCD中,底面ABCD是正方形,側棱PD與底面ABCD垂直,PD=DC,E是PC的中點,作EF于點F(Ⅰ)證明PA平面EBD.
(Ⅱ)證明PB平面EFD.
(Ⅲ)求二面角的余弦值;
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com