如圖,MlN120°的二面角,A、B兩點在棱上,AB=2,D在平面M內(nèi),三角形ABD是等腰直角三角形,∠DAB=90°,CN內(nèi),三角形ABC是直角三角形,∠ACB=90°,∠ABC=60°.

    1)求三棱錐DABC的體積;

    2)求直線BD與平面N所成的角的正弦值;

    (3)求二面角DACB的平面角的正切值.

 

答案:
解析:

答案:解:(1)過D向平面N作垂線,垂足為O,連接OA并延長至E.

    ABAD,OADA在平面N內(nèi)的射影,

    ABOA.∴∠DAE為二面角MlN的平面角.

    ∴∠DAE=120°.∴∠DAO=60°.

    AD=AB=2,∴.

    ∵△ABC是有一個銳角為30°的直角三角形,斜邊AB=2,

    ,又D到平面N的距離.

    .

    2)由(1)可知,∠DBO為直線BD與平面N所成的角,

    .

    3)過ON內(nèi)作OFAC,交AC的反向延長線于F,連接DF,則ACDF,

    ∴∠DFO為二面角DACB的平面角.又在△DOA中,OA=2cos60°=1,即∠OAF=

    EOC=60°,∴OF=1·sin60°=.

    .

 


練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)如圖,已知在坐標(biāo)平面內(nèi),M、N是x軸上關(guān)于原點O對稱的兩點,P是上半平面內(nèi)一點,△PMN的面積為
3
2
,點A坐標(biāo)為(1+
3
,
3
2
),
MP
=m•
OA
(m為常數(shù))
MN
OP
=|
MN
|

(Ⅰ)求以M、N為焦點且過點P的橢圓方程;
(Ⅱ)過點B(-1,0)的直線l交橢圓于C、D兩點,交直線x=-4于點E,點B、E分
CD
的比分別為λ1
、λ2,求證:λ12=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓C的中心在坐標(biāo)原點,焦點在x軸上,左、右焦點分別為F1,F(xiàn)2,且|F1F2|=2,點P(1,
32
)在橢圓C上.
(I)求橢圓C的方程;
(II)如圖,動直線l:y=kx+m與橢圓C有且僅有一個公共點,點M,N是直線l上的兩點,且F1M⊥l,F(xiàn)2M⊥l,求四邊形F1MNF2面積S的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖:過拋物線y2=4x上的點A(1,2)作切線l交x軸與直線x=-4分別于D,B.動點P是拋物線y2=4x上的一點,點E在線段AP上,滿足
AE
EP
=λ1
;點F在線段BP上,滿足
BF
FP
=λ2
,3λ1+2λ2=15且在△ABP中,線段PD與EF交于點Q.
(1)求點Q的軌跡方程;
(2)若M,N是直線x=-3 上的兩點,且⊙O1:(x+2)2+y2=1是△QMN的內(nèi)切圓,試求△QMN面積的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:數(shù)學(xué)教研室 題型:044

    如圖,MlN120°的二面角,A、B兩點在棱上,AB=2,D在平面M內(nèi),三角形ABD是等腰直角三角形,∠DAB=90°,CN內(nèi),三角形ABC是直角三角形,∠ACB=90°,∠ABC=60°.

    1)求三棱錐DABC的體積;

    2)求直線BD與平面N所成的角的正弦值;

    (3)求二面角DACB的平面角的正切值.

 

查看答案和解析>>

同步練習(xí)冊答案