如圖,橢圓的中心在原點,其左焦點與拋物線的焦點重合,過的直線與橢圓交于A、B兩點,與拋物線交于C、D兩點.當直線x軸垂直時,

(Ⅰ)求橢圓的方程;

(II)求過點O、,并且與橢圓的左準線相切的圓的方程;

(Ⅲ)求的最大值和最小值.

(Ⅰ)

(Ⅱ)

(Ⅲ)最大值,最小值


解析:

(Ⅰ)由拋物線方程,得焦點

設橢圓的方程:

解方程組 得C(-1,2),D(1,-2).

由于拋物線、橢圓都關于x軸對稱,

,, ∴ .        …………2分

,

因此,,解得并推得

故橢圓的方程為 .                            …………4分

(Ⅱ),

圓過點O、,

圓心M在直線上.

則圓半徑,由于圓與橢圓的左準線相切,

解得

所求圓的方程為…………………………8分

(Ⅲ) 由

①若垂直于軸,則

         ,

         …………………………………………9分

②若軸不垂直,設直線的斜率為,則直線的方程為

   

    得 

,方程有兩個不等的實數(shù)根.

.

,   ………………………………11分

        

        

         = 

 

,所以當直線垂于軸時,取得最大值

當直線軸重合時,取得最小值

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖,橢圓的中心在原點,F(xiàn)為橢圓的左焦點,B為橢圓的一個頂點,過點B作與FB垂直的直線BP交x軸于P點,且橢圓的長半軸長a和短半軸長b是關于x的方程3x2-3
3
cx+2c2=0
(其中c為半焦距)的兩個根.
(I)求橢圓的離心率;
(Ⅱ)經(jīng)過F、B、P三點的圓與直線x+
3
y-
3
=0
相切,試求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

如圖,橢圓的中心在原點,長軸AA1在x軸上.以A、A1為焦點的雙曲線交橢圓于C、D、D1、C1四點,且|CD|=|AA1|.橢圓的一條弦AC交雙曲線于E,設,當時,求雙曲線的離心率e的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:2011-2012學年江蘇省高三下學期質量檢測數(shù)學試卷 題型:解答題

如圖,橢圓的中心在原點,焦點在軸上,分別是橢圓的左、右焦點,是橢圓短軸的一個端點,過的直線與橢圓交于兩點,的面積為,的周長為

(1)求橢圓的方程;

(2)設點的坐標為,是否存在橢圓上的點及以為圓心的一個圓,使得該圓與直線都相切,如存在,求出點坐標及圓的方程,如不存在,請說明理由.

 

 

 

查看答案和解析>>

科目:高中數(shù)學 來源:2010-2011學年江蘇省南京市白下區(qū)高三二模數(shù)學試卷 題型:解答題

(本小題滿分15分)

如圖,橢圓的中心在原點,焦點在軸上,分別是橢圓的左、右焦點,是橢圓短軸的一個端點,過的直線與橢圓交于兩點,的面積為,的周長為

(1)求橢圓的方程;

(2)設點的坐標為,是否存在橢圓上的點及以為圓心的一個圓,使得該圓與直線都相切,如存在,求出點坐標及圓的方程,如不存在,請說明理由.

 

 

查看答案和解析>>

同步練習冊答案