若集合A={x|y=lg﹙2-x﹚}、B={y|y=2x-1,x<0},則A∩B=( 。
A、∅
B、(-∞,0]∪[2,=∞﹚
C、﹙0,1﹚
D、﹙0,
1
2
考點(diǎn):交集及其運(yùn)算
專題:集合
分析:利用對(duì)數(shù)性質(zhì)求出A中x的范圍,根據(jù)x的范圍求出B中y的范圍,確定出A與B,找出兩集合的交集即可.
解答:解:由A中的y=lg﹙2-x﹚,得到2-x>0,
解得:x<2,即A=(-∞,2);
由B中x<0,即x-1<-1,得到的0<y=2x-1<2-1=
1
2
,
∴B=(0,
1
2
),
則A∩B=(0,
1
2
).
故選:D.
點(diǎn)評(píng):此題考查了交集及其運(yùn)算,熟練掌握交集的定義是解本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x>-2},集合B={y|y=lnx,x>1},則A∪B=(  )
A、(2,0)B、(-2,1)C、(-2,+∞)D、(0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知全集U=R,集合A={x|2x>1},B={x|-4<x<1},則A∩B等于( 。
A、(0,1)B、(1,+∞)C、(-4,1)D、(-∞,-4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|y=2x},B={y|y=2x},則A∩B=( 。
A、[0,+∞)B、(0,+∞)C、RD、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|y=
x-x2
},B={y|y=x-x2},則A∩B=( 。
A、[0,1]
B、(-∞,1]
C、[0,
1
4
]
D、[0,
1
2
]

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合M={x|x2-2x-3<0},N={x|log2x<0},則M∩N等于( 。
A、(-1,0)B、(-1,1)C、(0,1)D、(1,3)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)全集U={1,2,3,4,5},集合A={2,3,4},集合B={3,5},則B∩∁UA=( 。
A、{5}B、{1,2,3,4,5}C、{1,3,5}D、∅

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)集合A={x||x-1|≤2},B={x|x2-3x-4≤0},則∁R(A∩B)=( 。
A、(-∞,-1)∪(1,+∞)B、(-∞,3)∪(4,+∞)C、(-∞,2)∪(2,+∞)D、(-∞,-1)∪(3,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=-2x3-x,若x1,x2,x3∈R,且x1+x2>0,x2+x3>0,x3+x1>0,則f(x1)+f(x2)+f(x3)的值( 。
A、大于零B、小于零C、等于零D、大于零或小于零

查看答案和解析>>

同步練習(xí)冊(cè)答案