如圖,在平面直角坐標(biāo)系中,已知曲線由圓弧和圓弧相接而成,兩相接點(diǎn)均在直線上.圓弧的圓心是坐標(biāo)原點(diǎn),半徑為13;圓弧過(guò)點(diǎn)(29,0).

(Ⅰ)求圓弧的方程.

(Ⅱ)曲線上是否存在點(diǎn),滿(mǎn)足?若存在,指出有幾個(gè)這樣的點(diǎn);若不存在,請(qǐng)說(shuō)明理由.

(Ⅲ)已知直線與曲線交于兩點(diǎn),當(dāng)=33時(shí),求坐標(biāo)原點(diǎn)到直線的距離.

解:(Ⅰ)圓弧所在圓的方程為,令x=5,解得M(5,12),N(5,-12) ………………2分

則線段AM中垂線的方程為,令y=0,得圓弧所在圓的圓心為(14,0),

又圓弧所在圓的半徑為=29-14=15,所以圓弧的方程為……5分

(Ⅱ)假設(shè)存在這樣的點(diǎn),則由,得………………………8分

,解得(舍去) …………………………………………………9分

,解得(舍去) ,

綜上知,這樣的點(diǎn)P不存在………………………………………………………………………………10分

(Ⅲ)因?yàn)?img width=105 height=24 src='http://thumb.zyjl.cn/pic1/2011/07/27/16/2011072716430353433402.files/image190.gif' >,所以兩點(diǎn)分別在兩個(gè)圓弧上.設(shè)點(diǎn)O到直線l的距離為d,

因?yàn)橹本l恒過(guò)圓弧所在圓的圓心(14,0),所以……………13分

,解得,所以點(diǎn)O到直線l的距離為 …………16分

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在△OAB中,點(diǎn)P是線段OB及線段AB延長(zhǎng)線所圍成的陰影區(qū)域(含邊界)的任意一點(diǎn),且
OP
=x
OA
+y
OB
則在直角坐標(biāo)平面內(nèi),實(shí)數(shù)對(duì)(x,y)所示的區(qū)域在直線y=4的下側(cè)部分的面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

1、如圖,在直角坐標(biāo)平面內(nèi)有一個(gè)邊長(zhǎng)為a,中心在原點(diǎn)O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點(diǎn),記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為
偶函數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,在直角坐標(biāo)平面內(nèi)有一個(gè)邊長(zhǎng)為a、中心在原點(diǎn)O的正六邊形ABCDEF,AB∥Ox.直線L:y=kx+t(k為常數(shù))與正六邊形交于M、N兩點(diǎn),記△OMN的面積為S,則函數(shù)S=f(t)的奇偶性為( 。
A、偶函數(shù)B、奇函數(shù)C、不是奇函數(shù),也不是偶函數(shù)D、奇偶性與k有關(guān)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2008•海珠區(qū)一模)如圖,在直角坐標(biāo)平面內(nèi),射線OT落在60°的終邊上,任作一條射線OA,OA落在∠x(chóng)OT內(nèi)的概率是
1
6
1
6

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在平面直角坐標(biāo)中,一定長(zhǎng)m的線段,其端點(diǎn)A、B分別在x軸、y軸上滑動(dòng),設(shè)點(diǎn)M滿(mǎn)足(λ是大于0,且不等于1的常數(shù)).

試問(wèn):是否存在定點(diǎn)E、F,使|ME|、|MB|、|MF|成等差數(shù)列?若存在,求出E、F的坐標(biāo);若不存在,說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案