已知一條曲線軸右側(cè),上每一點到點的距離減去它到軸距離的差都是1.
(1)求曲線的方程;
(2)設直線交曲線兩點,線段的中點為,求直線的一般式方程.
(1);(2)

試題分析:(1)設是曲線上任意一點,利用兩點之間的距離公式建立關于的方程,化簡即為曲線的方程;(2)設,然后利用點差法,結合中點坐標公式與斜率進行轉(zhuǎn)換即可求得直線的斜率,最后利用點斜式,通過化簡可求得直線的一般式方程.
試題解析:(1)設是曲線上任意一點,那么點滿足:
,化簡得
(2)設,由,
②得:,由于易知的斜率存在,
,即,所以,故的一般式方程為
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知定點和定直線,動點與定點的距離等于點到定直線的距離,記動點的軌跡為曲線.
(1)求曲線的方程.
(2)若以為圓心的圓與曲線交于、不同兩點,且線段是此圓的直徑時,求直線的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知拋物線C:y2=8x與點M(-2,2),過C的焦點且斜率為k的直線與C交于A、B兩點,若·=0,則k等于(  )
(A)    (B)    (C)       (D)2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

拋物線yx2上的點到直線xy+1=0的最短距離為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

頂點在原點,準線與軸垂直,且經(jīng)過點的拋物線方程是(     )
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

一個酒杯的軸截面是拋物線的一部分,它的方程是.在杯內(nèi)放入一個玻璃球,要使球觸及酒杯底部,則玻璃球的半徑r的范圍是(    )
A.0<r≤1B.0<r<1C.0<r≤2D.0<r<2

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

過拋物線y2=2px焦點F作直線l交拋物線于A,B兩點,O為坐標原點,則△ABO為(  ).
A.銳角三角形B.直角三角形
C.不確定D.鈍角三角形

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設某拋物線的準線與直線之間的距離為3,則該拋物線的方程為          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

設斜率為2的直線過拋物線的焦點F,且和軸交于點A,若△OAF(O為坐標原點)的面積為4,則拋物線方程為(    ).
A.B.C.D.

查看答案和解析>>

同步練習冊答案