【題目】如圖幾何體是四棱錐,為正三角形,,且

(1)求證: 平面平面

(2)是棱的中點(diǎn),求證:平面;

(3)求四棱錐的體積

【答案】(1)證明見解析;(2)證明見解析;(3)

【解析】

試題分析:(1)先證再由面面垂直的判定定理可得平面平面;(2)先證,再由由線線平行得到線面平行可得平面;(3)根據(jù)勾股定理,再根據(jù)等腰三角形性質(zhì)得,從而平面,進(jìn)而根據(jù)棱錐的體積公式可得結(jié)果

試題解析:(1)證明: 為正三角形,故連接點(diǎn),則,又 平面平面

(2)證明: 的中點(diǎn),連接,則,且平面平面;而,且平面平面綜上所述,平面平面平面

(3)由(1)知,且,則是直角三角形,且,在中作,可求得也即重合,故;

,又的中點(diǎn),故,從而平面

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=x2+bx為偶函數(shù),數(shù)列{an}滿足an+12f(an-1)+1,且a1=3,an>1.

(1)設(shè)bn=log2(an-1),證明:數(shù)列{bn+1}為等比數(shù)列;

(2)設(shè)cn=nbn,求數(shù)列{cn}的前n項(xiàng)和Sn.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)的某種時(shí)令商品每件成本為元,經(jīng)過市場調(diào)研發(fā)現(xiàn),這種商品在未來天內(nèi)的日銷售量(件)與時(shí)間(天)的關(guān)系如下表所示.

時(shí)間/天

1

3

6

10

36

……

日銷售量

/件

94

90

84

76

24

……

未來40天內(nèi),前20天每天的價(jià)格(元/件)與時(shí)間(天)的函數(shù)關(guān)系式為 ,且為整數(shù)),后20天每天的價(jià)格(元/件)與時(shí)間(天)的函數(shù)關(guān)系式為,且為整數(shù)).

(Ⅰ)認(rèn)真分析表格中的數(shù)據(jù),用所學(xué)過的一次函數(shù)、二次函數(shù)、反比例函數(shù)的知識確定一個(gè)滿足這些數(shù)據(jù)(件)與 (天)的關(guān)系式;

(Ⅱ)試預(yù)測未來 40 天中哪一天的日銷售利潤最大,最大利潤是多少?

(Ⅲ)在實(shí)際銷售的前 20 天中,該公司決定每銷售 1 件商品就捐贈(zèng)元利潤給希望工程. 公司通過銷售記錄發(fā)現(xiàn),前 20 天中,每天扣除捐贈(zèng)后的日銷售利潤隨時(shí)間(天)的增大而增大,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),在處取得極值

(1)求的值;

(2)若對任意的,都有成立,(其中是函數(shù)的導(dǎo)函數(shù)),求實(shí)數(shù)的最小值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知點(diǎn)P(2,2),圓C:x2+y2-8y=0,過點(diǎn)P的動(dòng)直線l與圓C交于A,B兩點(diǎn),線段AB的中點(diǎn)為M,O為坐標(biāo)原點(diǎn).

(1)求M的軌跡方程;

(2)當(dāng)|OP|=|OM|時(shí),求l的方程及△POM的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)f(x)的定義域?yàn)?-3,3),

滿足f(-x)=-f(x),且對任意x,y,都有f(x)-f(y)=f(xy),當(dāng)x<0時(shí),f(x)>0,f(1)=-2.

(1)求f(2)的值;

(2)判斷f(x)的單調(diào)性,并證明;

(3)若函數(shù)g(x)=f(x-1)+f(3-2x),求不等式g(x)≤0的解集.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某公司生產(chǎn)一種電子儀器的固定成本為20 000元,每生產(chǎn)一臺(tái)儀器需要增加投入100元,已知總收益滿足函數(shù):R(x)其中x是儀器的月產(chǎn)量.當(dāng)月產(chǎn)量為何值時(shí),公司所獲得利潤最大?最大利潤是多少?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知四邊形均為直角梯形,,平面平面,

(1)求證:平面;

(2)求平面和平面所成銳二面角的余弦值

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】為推行“新課堂”教學(xué)法,某化學(xué)老師分別用傳統(tǒng)教學(xué)和“新課堂”兩種不同的教學(xué)方式,在甲、乙兩個(gè)平行班級進(jìn)行教學(xué)實(shí)驗(yàn).為了比較教學(xué)效果,期中考試后,分別從兩個(gè)班級中各隨機(jī)抽取20名學(xué)生的成績進(jìn)行統(tǒng)計(jì),結(jié)果如下表:記成績不低于70分者為“成績優(yōu)良”.

分?jǐn)?shù)

甲班頻數(shù)

5

6

4

4

1

一般頻數(shù)

1

3

6

5

5

(1)由以下統(tǒng)計(jì)數(shù)據(jù)填寫下面列聯(lián)表,并判斷能否在犯錯(cuò)誤的額概率不超過0.025的前提下認(rèn)為“成績優(yōu)良與教學(xué)方式有關(guān)”?

甲班

乙班

總計(jì)

成績優(yōu)良

成績不優(yōu)良

總計(jì)

附:,其中.

臨界值表

0.10

0.05

0.025

0.010

2.706

3.841

5.024

6.635

(2)現(xiàn)從上述40人中,學(xué)校按成績是否優(yōu)良采用分層抽樣的方法抽取8人進(jìn)行考核.在這8人中,記成績不優(yōu)良的乙班人數(shù)為,求的分布列及數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案