【題目】在等腰直角三角形中,,點(diǎn)是邊上異于的一點(diǎn),光線(xiàn)從點(diǎn)出發(fā),經(jīng)反射后又回到原點(diǎn),光線(xiàn)經(jīng)過(guò)的重心.
(1)建立適當(dāng)?shù)淖鴺?biāo)系,請(qǐng)求的重心的坐標(biāo);
(2)求點(diǎn)的坐標(biāo);
(3)求的周長(zhǎng)及面積.
【答案】(1)坐標(biāo)系見(jiàn)解析,;(2);(3);
【解析】
(1)以為原點(diǎn),為軸,為軸建立直角坐標(biāo)系,依次寫(xiě)出的坐標(biāo),由重心公式求得重心即可;
(2)由光的反射具有對(duì)稱(chēng)性,作關(guān)于的對(duì)稱(chēng)點(diǎn),關(guān)于的對(duì)稱(chēng)點(diǎn),則四點(diǎn)共線(xiàn),設(shè),根據(jù)對(duì)稱(chēng)性可得,,且在直線(xiàn)上,解出方程并將點(diǎn)坐標(biāo)代入即可求得,進(jìn)而得到的坐標(biāo);
(3)由(2), 的周長(zhǎng)轉(zhuǎn)化為的長(zhǎng),利用割補(bǔ)法將的面積轉(zhuǎn)化為的面積與的面積的差計(jì)算即可
(1)以為原點(diǎn),為軸,為軸建立直角坐標(biāo)系,則,,,
所以根據(jù)重心公式可得重心為,即
(2)作關(guān)于的對(duì)稱(chēng)點(diǎn),關(guān)于的對(duì)稱(chēng)點(diǎn),由于光的反射原理,四點(diǎn)共線(xiàn),
因?yàn)?/span>過(guò)重心,所以過(guò)重心,
設(shè),則,
因?yàn)?/span>,,所以直線(xiàn)為:,
設(shè),則,所以 ,即
則直線(xiàn)為,
由(1),代入點(diǎn),即,
所以或,
因?yàn)?/span>異于,
所以點(diǎn)為
(3)由(2),,,
由于對(duì)稱(chēng)性,則的周長(zhǎng)為:,
直線(xiàn)為,即,
當(dāng)時(shí),,則
聯(lián)立,解得,則,
所以的面積為:
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】下列有關(guān)平面向量分解定理的四個(gè)命題:
(1)一個(gè)平面內(nèi)有且只有一對(duì)不平行的向量可作為表示該平面所有向量的基;
(2)一個(gè)平面內(nèi)有無(wú)數(shù)多對(duì)不平行向量可作為表示該平面內(nèi)所有向量的基;
(3)平面向量的基向量可能互相垂直;
(4)一個(gè)平面內(nèi)任一非零向量都可唯一地表示成該平面內(nèi)三個(gè)互不平行向量的線(xiàn)性組合.
其中正確命題的個(gè)數(shù)是( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖(1),等腰梯形,,,,,分別是的兩個(gè)三等分點(diǎn),若把等腰梯形沿虛線(xiàn)、折起,使得點(diǎn)和點(diǎn)重合,記為點(diǎn), 如圖(2).
(1)求證:平面平面;
(2)求平面與平面所成銳二面角的余弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知:函數(shù)(其中常數(shù)).
(Ⅰ)求函數(shù)的定義域及單調(diào)區(qū)間;
(Ⅱ)若存在實(shí)數(shù),使得不等式成立,求a的取值范圍
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在多面體ABD﹣A1B1C1D1中四邊形A1B1C1D1,ADD1A1.ABB1A1均為正方形.點(diǎn)M是BD的中點(diǎn).點(diǎn)H在線(xiàn)段C1M上,且A1H與平面ABD所成角的正弦值為.
(Ⅰ)證明:B1D1∥平面BC1D:
(Ⅱ)求二面角A﹣A1H﹣B的的正弦值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】給出以下三個(gè)命題:
①若,則;
②在中,若,則;
③在一元二次方程中,若,則方程有實(shí)數(shù)根.
其中原命題、逆命題、否命題、逆否命題均為真命題的是________.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)P是橢圓上一點(diǎn),M,N分別是兩圓(x+4)2+y2=1和(x-4)2+y2=1上的點(diǎn),則|PM|+|PN|的最小值、最大值分別為 ( )
A. 9,12 B. 8,11 C. 10,12 D. 8,12
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在底面是菱形的四棱錐中,,,,點(diǎn)在上,且.
(1)證明:面;
(2)在棱上是否存在一點(diǎn),使三棱錐是正三棱錐?證明你的結(jié)論.
(3)求以為棱,與為面的二面角的大。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com