如圖,正三棱柱A-BCD中,E在棱AB上,F(xiàn)在棱CD上,并使AE:EB=CF:FD=m(m>0),設(shè)α為異面直線EF和AC所成的角,β為異面直線EF和BD所成的角,則α+β的值是________.


分析:要求α+β的值,關(guān)鍵是作出異面直線的所成角,利用比例關(guān)系,尋找平行線,從而得到線線角.
解答:過(guò)點(diǎn)F作BD的平行線,交BC于M,則
∵AE:EB=CF:FD=m,∴EM∥AC
∴α=∠MEF,β=∠MFE
∵正三棱柱A-BCD,∴AC⊥BD
∴α+β=
故答案為
點(diǎn)評(píng):本題的考點(diǎn)是異面直線及其所成的角,主要考查異面直線及其所成的角的尋找與求解,關(guān)鍵是作出異面直線所成的角,同等考查了正棱錐的性質(zhì).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1的底面邊長(zhǎng)為a,側(cè)棱長(zhǎng)為
2
a

(1)建立適當(dāng)?shù)淖鴺?biāo)系,并寫(xiě)出點(diǎn)A,B,A1,C1的坐標(biāo);
(2)求AC1與側(cè)面ABB1A1所成的角.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,D為CC1中點(diǎn).
(Ⅰ)求證:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,D為CC1中點(diǎn).
(Ⅰ)求證:AB1⊥平面A1BD;
(Ⅱ)求二面角A-A1D-B的正弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖在 正三棱柱ABC-A1 B1 C1中,底面邊長(zhǎng)為
2

(1)設(shè)側(cè)棱長(zhǎng)為1,求證A B1⊥B C1;
(2)設(shè)A B1與B C1成600角,求側(cè)棱長(zhǎng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•鄭州二模)如圖,正三棱柱ABC-A1B1C1的所有棱長(zhǎng)都為2,
CD
CC1
.(λ∈R)
(Ⅰ)當(dāng)λ=
1
2
時(shí),求證AB1⊥平面A1BD;
(Ⅱ)當(dāng)二面角A-A1D-B的大小為
π
3
時(shí),求實(shí)數(shù)λ的值.

查看答案和解析>>

同步練習(xí)冊(cè)答案