若命題“?x∈R,x2+ax+1≥0”是真命題,則實數(shù)a的取值范圍為______.
因為命題“?x∈R,x2+ax+1≥0”是真命題,
所以不等式x2+ax+1≥0在x∈R上恒成立.
由函數(shù)y=x2+ax+1的圖象是一條開口向上的拋物線可知,
判別式△≤0即a2-4≤0⇒-2≤a≤2,
所以實數(shù)a的取值范圍是[-2,2].
故答案為:[-2,2].
練習冊系列答案
相關習題

科目:高中數(shù)學 來源:不詳 題型:單選題

下列命題中的真命題是(  )
A.2+4=7B.若x=1,則x2-1=0
C.若x2=1,則x=1D.3能被2整除

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

(理科做)直棱柱ABCD-A1B1C1D1中,AA1=AD=DC=2,BC=1,∠ADC=90°,下列結(jié)論:
①該直棱柱的體積一定是6
②用一平面去截直四棱柱,截面可能為三角形,四邊形,五邊形和六邊形;
③M∈平面ABCD,D1M⊥平面A1C1D,則DM=2
2
;
④M∈平面ABCD,D1M⊥平面A1C1D,設D1M∩平面A1C1D=O,則
OC1
+
OA1
=
DO
;
⑤M∈平面ABCD,D1M⊥平面A1C1D,設D1M∩平面A1C1D=O,則D1O:OM=1:2;
其中你認為正確的所有結(jié)論的序號是______.(寫出所有正確命題的編號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

給出下列命題:
①已知等比數(shù)列{an}的首項為a1,公比為q,則其前n項和Sn=
a1(1-qn)
1-q
(n∈N*);
②△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,則存在△ABC使得
a
cosA
=
b
cosB
=
c
cosC
;
③函數(shù)f(x)=
x2+4
+
1
x2+4
(x∈R)的最小值為2.
④在一個命題的四種形式中,真命題的個數(shù)為0或2或4
其中正確命題的序號是______.(寫出所有正確命題的序號)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知c>0,設命題p:指數(shù)函數(shù)y=-(2c-1)x在實數(shù)集R上為增函數(shù),命題q:不等式x+(x-2c)2>1在R上恒成立.若命題p或q是真命題,p且q是假命題,求c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

正方體ABCD-A1B1C1D1中,長度為定值的線段EF在線段B1D1上滑動,現(xiàn)有五個命題如下:
①AC⊥BE;
②EF平面A1BD;
③直線AE與BF所成角為定值;
④直線AE與平面BD1所成角為定值;
⑤三棱錐A-BEF的體積為定值.
其中正確命題序號為______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知函數(shù)f(x)=logm
1+x
x-1
(其中m>0且m≠1).
(1)判斷函數(shù)f(x)的奇偶性,并加以證明;
(2)當0<m<1時,判斷函數(shù)f(x)在區(qū)間(1,+∞)上的單調(diào)性,并加以證明.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列有關命題的說法正確的有( 。
①命題“若x2-3x+2=0,則x=1”的逆否命題為:“若x≠1,則x2-3x+2≠0”;
②“x=1”是“x2-3x+2=0”的充分不必要條件;
③若p∧q為假命題,則p、q均為假命題;
④若“p∨q”為假命題,則“?p∧?q”為真命題.
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

下列說法正確的是( 。
A.“f(0)=0”是“函數(shù)f(x)是奇函數(shù)”的充要條件
B.若p:?x0∈R,x02-x0-1>0,則¬p:?x∈R,x2-x-1<0
C.若p∧q為假命題,則p,q均為假命題
D.“若α=
π
6
,則sinα=
1
2
”的否命題是“若α≠
π
6
,則sinα≠
1
2

查看答案和解析>>

同步練習冊答案