已知橢圓和橢圓的離心率相同,且點在橢圓上.
(1)求橢圓的方程;
(2)設(shè)為橢圓上一點,過點作直線交橢圓、兩點,且恰為弦的中點。求證:無論點怎樣變化,的面積為常數(shù),并求出此常數(shù).
(1)橢圓的方程為;(2)的面積為常數(shù)

試題分析:(1)由題知,解這個方程組求得即可得橢圓的方程;(2)涉及直線與曲線的關(guān)系的問題,多是將直線方程與曲線方程聯(lián)立再用韋達定理解決.此題中有兩個橢圓,將哪個橢圓的方程與直線方程聯(lián)立?此題意即直線與的交點的中點在上,故應(yīng)將直線方程與的方程聯(lián)立由韋達定理得中點坐標,再將中點坐標代入的方程.然后求出三角形OAB的面積的表達式,再利用前面所得關(guān)系式化為一常數(shù)即可.
試題解析:(1)由題知, 即橢圓的方程為;    4分
(2)當直線的斜率不存在時,必有,此時,        5分
當直線的斜率存在時,設(shè)其斜率為、點,則
與橢圓聯(lián)立,得,設(shè),
  即            8分
             9分



綜上,無論怎樣變化,的面積為常數(shù).            12分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知曲線的方程為,過原點作斜率為的直線和曲線相交,另一個交點記為,過作斜率為的直線與曲線相交,另一個交點記為,過作斜率為的直線與曲線相交,另一個交點記為,如此下去,一般地,過點作斜率為的直線與曲線相交,另一個交點記為,設(shè)點).
(1)指出,并求的關(guān)系式();
(2)求)的通項公式,并指出點列,,向哪一點無限接近?說明理由;
(3)令,數(shù)列的前項和為,試比較的大小,并證明你的結(jié)論.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓E:的離心率為,過左焦點且斜率為的直線交橢圓EA,B兩點,線段AB的中點為M,直線交橢圓EC,D兩點.

(1)求橢圓E的方程;
(2)求證:點M在直線上;
(3)是否存在實數(shù)k,使得三角形BDM的面積是三角形ACM的3倍?若存在,求出k的值;
若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

設(shè)雙曲線的兩個焦點為,,一個頂點式,則的方程為          .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

(2014·黃岡模擬)如圖,等腰梯形ABCD中,AB∥CD且AB=2,AD=1,DC=2x(x∈(0,1)).以A,B為焦點,且過點D的雙曲線的離心率為e1;以C,D為焦點,且過點A的橢圓的離心率為e2,則e1+e2的取值范圍為(  )
A.[2,+∞)B.(,+∞)
C.D.(+1,+∞)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知F1、F2為雙曲線=1(a>0,b>0)的左、右焦點,過點F2作此雙曲線一條漸近線的垂線,垂足為M,且滿足||=3||,則此雙曲線的漸近線方程為________.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

拋物線y=﹣x2上的點到直線4x+3y﹣8=0距離的最小值是( 。
A.B.C.D.3

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓的中心在坐標原點,對稱軸為坐標軸,焦點在軸上,有一個頂點為,
(1)求橢圓的方程;
(2)過點作直線與橢圓交于兩點,線段的中點為,求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

橢圓C=1(ab>0)的左、右焦點分別是F1、F2,離心率為,過F1且垂直于x軸的直線被橢圓C截得的線段長為1.
(1)求橢圓C的方程;
(2)點P是橢圓C上除長軸端點外的任一點,過點P作斜率為k的直線l,使得l與橢圓C有且只有一個公共點.設(shè)直線PF1,PF2的斜率分別為k1k2.若k≠0,試證明為定值,并求出這個定值.

查看答案和解析>>

同步練習冊答案