【題目】已知函數(shù)f(x)=sin2wx﹣sin2(wx﹣ )(x∈R,w為常數(shù)且 <w<1),函數(shù)f(x)的圖象關于直線x=π對稱. (I)求函數(shù)f(x)的最小正周期;
(Ⅱ)在△ABC中,角A,B,C的對邊分別為a,b,c,若a=1,f( A)= .求△ABC面積的最大值.

【答案】解:(I)f(x)= cos2ωx﹣[ cos(2ωx﹣ )]= cos(2ωx﹣ )﹣ cos2ωx=﹣ cos2ωx+ sin2ωx= sin(2ωx﹣ ). 令2ωx﹣ = +kπ,解得x= .∴f(x)的對稱軸為x= ,
=π解得ω= .∵ <w<1,∴當k=1時,ω=
∴f(x)= sin( x﹣ ).
∴f(x)的最小正周期T=
(Ⅱ)∵f( )= sin(A﹣ )= ,∴sin(A﹣ )= .∴A=
由余弦定理得cosA= = = .∴b2+c2=bc+1≥2bc,∴bc≤1.
∴SABC= =
∴△ABC面積的最大值是
【解析】(1)化簡f(x),根據(jù)對稱軸求出ω,得出f(x)的解析式,利用周期公式計算周期;(2)由f( A)= 解出A,利用余弦定理和基本不等式得出bc的最大值,代入面積公式得出面積的最大值.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】已知Sn表示數(shù)列{an}的前n項和,若對任意的n∈N*滿足an1ana2 , 且a3=2,則S2016=( )
A.1006×2013
B.1006×2014
C.1008×2015
D.1007×2015

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】α、β是兩個平面,mn是兩條直線,有下列四個命題:
①如果mn , mα , nβ , 那么αβ.
②如果mαnα , 那么mn.
③如果αβ , m α , 那么mβ.
④如果mn , αβ , 那么mα所成的角和nβ所成的角相等.
其中正確的命題有.(填寫所有正確命題的編號)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】△ABC中,若sinC=( cosA+sinA)cosB,則(
A.B=
B.2b=a+c
C.△ABC是直角三角形
D.a2=b2+c2或2B=A+C

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在△ABC中,角A,B,C所對的邊長分別為a,b,c,且cos =
(1)若a=3,b= ,求c的值;
(2)若f(A)=sin cos ﹣sin )+ ,求f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,圓C的參數(shù)方程 (φ為參數(shù)),以O為極點,x軸的非負半軸為極軸建立極坐標系.
(1)求圓C的極坐標方程;
(2)直線l的極坐標方程是2ρsin(θ+ )=3 ,射線OM:θ= 與圓C的交點為O、P,與直線l的交點為Q,求線段PQ的長.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】數(shù)列{an}中,a1=1,an﹣an+1=anan+1 , n∈N*
(1)求數(shù)列{an}的通項公式;
(2)Sn為{an}的前n項和,bn=S2n﹣Sn , 求bn的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】極坐標系與直角坐標系xOy取相同的長度單位,以原點O為極點,以x軸正半軸為極軸.已知直線l的參數(shù)方程為 為參數(shù)).曲線C的極坐標方程為
(1)求直線l的傾斜角和曲線C的直角坐標方程;
(2)設直線C與曲線C交于A,B兩點,與x軸的交點為M,求 的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,AD∥BC,∠ADC=∠PAB=90°,BC=CD= AD.E為棱AD的中點,異面直線PA與CD所成的角為90°.
(1)在平面PAB內(nèi)找一點M,使得直線CM∥平面PBE,并說明理由;
(2)若二面角P﹣CD﹣A的大小為45°,求二面角P﹣CE﹣B的余弦值.

查看答案和解析>>

同步練習冊答案