規(guī)定,其中x∈R,m是正整數(shù),且CX=1.這是組合數(shù)Cnm(n,m是正整數(shù),且m≤n)的一種推廣.
(1)求C-153的值;
(2)組合數(shù)的兩個性質:①Cnm=Cnn-m;②Cnm+Cnm-1=Cn+1m是否都能推廣到Cxm(x∈R,m∈N*)的情形?若能推廣,請寫出推廣的形式并給予證明;若不能請說明理由.
(3)已知組合數(shù)Cnm是正整數(shù),證明:當x∈Z,m是正整數(shù)時,Cxm∈Z.
【答案】分析:(1)根據(jù)所給的組合數(shù)公式,寫出C-153的值,這里與平常所做的題目不同的是組合數(shù)的下標是一個負數(shù),在本題的新定義下,按照一般組合數(shù)的公式來用.
(2)Cnm=Cnn-m不能推廣到Cxm的情形,舉出兩個反例 無意義;Cnm+Cnm-1=Cn+1m能推廣到Cxm的情形,可以利用組合數(shù)的公式來證明,證明的方法同沒有推廣之情相同.
(3)可分三類討論,x≥m與0≤x<m 時易證得結論成立,當x<0時,因為-x+m-1>0,由定義中的運算公式展開再整理即可得到此種情況下也是成立的
解答:解:(1)由題意C-153==-C173=-680   …(4分)
(2)性質①Cnm=Cnn-m不能推廣,例如x=時,有定義,但無意義;
性質②Cnm+Cnm-1=Cn+1m 能推廣,它的推廣形式為Cxm+Cxm-1=Cx+1m,x∈R,m∈N*
證明如下:當m=1時,有Cx1+Cx=x+1=Cx+11;   …(1分)
當m≥2時,有Cxm+Cxm-1====Cx+1m,(6分)
(3)由題意,x∈Z,m是正整數(shù)時
當x≥m時,組合數(shù)Cxm∈z成立;
當0≤x<m 時,,結論也成立;
當x<0時,因為-x+m-1>0,∴Cxm==(-1)m=(-1)mC-x+m-1m∈z(7分)
綜上所述當x∈Z,m是正整數(shù)時,Cxm∈Z
點評:本題考查組合數(shù)公式,不是在一般的情況下應用組合數(shù)公式,而是對于組合數(shù)公式推廣使用,是一個探究型題,題目解起來容易出錯.在平時學習中這類題沒有意義,價值不大
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

規(guī)定,其中x∈R,m是正整數(shù),且=1,這是組合數(shù) (n、m是正整數(shù),且m≤n)的一種推廣。

(I)求的值。

(II)組合數(shù)的兩個性質;①;②。是否都能推廣到 (x∈R,m是正整數(shù))的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說明理由;

(III)已知組合數(shù)是正整數(shù),證明:當x∈Z,m是正整數(shù)時,∈Z。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

規(guī)定=,其中x∈R,m是正整數(shù),且,這是組合數(shù)(n、m是正整數(shù),且m≤n)的一種推廣.

(1)求的值.

(2)設x>0,當x為何值時,取最小值?

(3)我們知道組合數(shù)具有如下兩個性質:

=;②+=.

是否都能推廣到(x∈R,m是正整數(shù))的情形?若能推廣,請寫出推廣的形式,并給出證明;若不能,則說明理由.

(4)已知組合數(shù)是正整數(shù),證明當x∈Z,m是正整數(shù)時,Z.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2014屆河北省高二下學期第二次月考理科數(shù)學試卷(解析版) 題型:解答題

規(guī)定,其中x∈R,m是正整數(shù),且,這是組合數(shù)(n、m是正整數(shù),且m≤n)的一種推廣.

(1) 求的值;

(2) 設x>0,當x為何值時,取得最小值?

(3) 組合數(shù)的兩個性質;

. 、.

是否都能推廣到(x∈R,m是正整數(shù))的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:2012年人教A版高中數(shù)學選修2-3 1.3二項式定理練習卷(解析版) 題型:解答題

(14分)規(guī)定,其中x∈R,m是正整數(shù),且,這是組合數(shù)nm是正整數(shù),且mn)的一種推廣.

(1) 求的值;

(2) 設x>0,當x為何值時,取得最小值?

(3) 組合數(shù)的兩個性質;

.  ②.

是否都能推廣到x∈R,m是正整數(shù))的情形?若能推廣,則寫出推廣的形式并給出證明;若不能,則說明理由.

 

查看答案和解析>>

科目:高中數(shù)學 來源:專項題 題型:解答題

規(guī)定,其中x∈R,m是正整數(shù),且,這是組合數(shù)(n,m是正整數(shù),且m≤n)的一種推廣,
(Ⅰ)求的值;
(Ⅱ)組合數(shù)的兩個性質:①;②,
是否都能推廣到(x∈R,m是正整數(shù))的情形?若能推廣,請寫出推廣的形式,并給出明;若不能,則說明理由;
(Ⅲ)已知組合數(shù)是正整數(shù),證明:當x∈Z,m是正整數(shù)時,∈Z。

查看答案和解析>>

同步練習冊答案