【題目】已知實(shí)數(shù)集R,集合A={x|1<x<3},集合B={x|y= },則A∩(RB)=( )
A.{x|1<x≤2}
B.{x|1<x<3}
C.{x|2≤x<3}
D.{x|1<x<2}
【答案】A
【解析】解:由x﹣2>0得x>2,則集合B={x|x>2},
所以RB={x|x≤2},
又集合A={x|1<x<3},
則A∩(RB)={x|1<x≤2},
故選A.
【考點(diǎn)精析】關(guān)于本題考查的交、并、補(bǔ)集的混合運(yùn)算,需要了解求集合的并、交、補(bǔ)是集合間的基本運(yùn)算,運(yùn)算結(jié)果仍然還是集合,區(qū)分交集與并集的關(guān)鍵是“且”與“或”,在處理有關(guān)交集與并集的問題時(shí),常常從這兩個(gè)字眼出發(fā)去揭示、挖掘題設(shè)條件,結(jié)合Venn圖或數(shù)軸進(jìn)而用集合語言表達(dá),增強(qiáng)數(shù)形結(jié)合的思想方法才能得出正確答案.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知直線x+y+m=0與圓x2+y2=4交于不同的兩點(diǎn)A,B,O是坐標(biāo)原點(diǎn), ,則實(shí)數(shù)m的取值范圍是( )
A.[﹣2,2]
B.
C.
D.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】若拋物線y2=2px上恒有關(guān)于直線x+y﹣1=0對稱的兩點(diǎn)A,B,則p的取值范圍是( )
A.(﹣ ,0)
B.(0, )
C.(0, )
D.(﹣∞,0)∪( ,+∞)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在棱長為1的正方體ABCD﹣A1B1C1D1中,給出以下結(jié)論: ①直線A1B與B1C所成的角為60°;
②若M是線段AC1上的動(dòng)點(diǎn),則直線CM與平面BC1D所成角的正弦值的取值范圍是 ;
③若P,Q是線段AC上的動(dòng)點(diǎn),且PQ=1,則四面體B1D1PQ的體積恒為 .
其中,正確結(jié)論的個(gè)數(shù)是( )
A.0個(gè)
B.1個(gè)
C.2個(gè)
D.3個(gè)
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)f(x)=x2﹣2x+3 (Ⅰ)若函數(shù) 的最小值為3,求實(shí)數(shù)m的值;
(Ⅱ)若對任意互不相同的x1 , x2∈(2,4),都有|f(x1)﹣f(x2)|<k|x1﹣x2|成立,求實(shí)數(shù)k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知圓C:x2﹣(1+a)x+y2﹣ay+a=0(a∈R). (Ⅰ) 若a=1,求直線y=x被圓C所截得的弦長;
(Ⅱ) 若a>1,如圖,圓C與x軸相交于兩點(diǎn)M,N(點(diǎn)M在點(diǎn)N的左側(cè)).過點(diǎn)M的動(dòng)直線l與圓O:x2+y2=4相交于A,B兩點(diǎn).問:是否存在實(shí)數(shù)a,使得對任意的直線l均有∠ANM=∠BNM?若存在,求出實(shí)數(shù)a的值,若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù)f(x)= 為偶函數(shù).
(1)求實(shí)數(shù)t值;
(2)記集合E={y|y=f(x),x∈{1,2,3}},λ=lg22+lg2lg5+lg5﹣1,判斷λ與E的關(guān)系;
(3)當(dāng)x∈[a,b](a>0,b>0)時(shí),若函數(shù)f(x)的值域?yàn)閇2﹣ ,2﹣ ],求實(shí)數(shù)a,b的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】設(shè)函數(shù)f(x)=4sinx(cosx﹣sinx)+3 (Ⅰ)當(dāng)x∈(0,π)時(shí),求f(x)的單調(diào)遞減區(qū)間;
(Ⅱ)若f(x)在[0,θ]上的值域?yàn)閇0,2 +1],求cos2θ的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】要得到函數(shù)y=log2(2x+1)的圖象,只需將y=1+log2x的圖象( )
A.向左移動(dòng) 個(gè)單位
B.向右移動(dòng) 個(gè)單位
C.向左移動(dòng)1個(gè)單位
D.向右移動(dòng)1個(gè)單位
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com