在平面直角坐標(biāo)系xOy中,過點(diǎn)A(-2,-1)橢圓C=1(ab>0)的左焦點(diǎn)為F,短軸端點(diǎn)為B1、B2=2b2.
(1)求a、b的值;
(2)過點(diǎn)A的直線l與橢圓C的另一交點(diǎn)為Q,與y軸的交點(diǎn)為R.過原點(diǎn)O且平行于l的直線與橢圓的一個(gè)交點(diǎn)為P.若AQ·AR=3OP2,求直線l的方程.
(1)a=2,b(2)當(dāng)k=1時(shí),直線l的方程為xy+1=0,當(dāng)k=-2時(shí),直線l的方程為2xy+5=0.
(1)因?yàn)?i>F(-c,0),B1(0,-b),B2(0,b),所以=(c,-b),=(c,b).
因?yàn)?img src="http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824035039933568.png" style="vertical-align:middle;" />=2b2,
所以c2b2=2b2.①
因?yàn)闄E圓CA(-2,-1),代入得,=1.②
由①②解得a2=8,b2=2.
所以a=2b.
(2)由題意,設(shè)直線l的方程為y+1=k(x+2).
得(x+2)[(4k2+1)(x+2)-(8k+4)]=0.
因?yàn)?i>x+2≠0,所以x+2=,即xQ+2=.
由題意,直線OP的方程為ykx.
得(1+4k2)x2=8.則,
因?yàn)?i>AQ·AR=3OP2.所以|xQ-(-2)|×|0-(-2)|=3.
×2=3×.
解得k=1,或k=-2.
當(dāng)k=1時(shí),直線l的方程為xy+1=0,當(dāng)k=-2時(shí),直線l的方程為2xy+5=0
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:=1(a>b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)A在橢圓C上,·=0,3||·||=-5·,||=2,過點(diǎn)F2且與坐標(biāo)軸不垂直的直線交橢圓于P,Q兩點(diǎn).
(1)求橢圓C的方程;
(2)線段OF2(O為坐標(biāo)原點(diǎn))上是否存在點(diǎn)M(m,0),使得··?若存在,求出實(shí)數(shù)m的取值范圍;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,已知橢圓的離心率是分別是橢圓的左、右兩個(gè)頂點(diǎn),點(diǎn)是橢圓的右焦點(diǎn)。點(diǎn)軸上位于右側(cè)的一點(diǎn),且滿足

(1)求橢圓的方程以及點(diǎn)的坐標(biāo);
(2)過點(diǎn)軸的垂線,再作直線與橢圓有且僅有一個(gè)公共點(diǎn),直線交直線于點(diǎn).求證:以線段為直徑的圓恒過定點(diǎn),并求出定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,矩形ABCD中,|AB|=2,|BC|=2.E,F(xiàn),G,H分別是矩形四條邊的中點(diǎn),分別以HF,EG所在的直線為x軸,y軸建立平面直角坐標(biāo)系,已知=λ,=λ,其中0<λ<1.

(1)求證:直線ER與GR′的交點(diǎn)M在橢圓Γ:+y2=1上;
(2)若點(diǎn)N是直線l:y=x+2上且不在坐標(biāo)軸上的任意一點(diǎn),F(xiàn)1、F2分別為橢圓Γ的左、右焦點(diǎn),直線NF1和NF2與橢圓Γ的交點(diǎn)分別為P、Q和S、T.是否存在點(diǎn)N,使得直線OP、OQ、OS、OT的斜率kOP、kOQ、kOS、kOT滿足kOP+kOQ+kOS+kOT=0?若存在,求出點(diǎn)N的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

拋物線,其準(zhǔn)線方程為,過準(zhǔn)線與軸的交點(diǎn)做直線交拋物線于兩點(diǎn).
(1)若點(diǎn)中點(diǎn),求直線的方程;
(2)設(shè)拋物線的焦點(diǎn)為,當(dāng)時(shí),求的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓的中心為坐標(biāo)原點(diǎn)O,橢圓短半軸長為1,動(dòng)點(diǎn)M(2,t)(t>0)在直線x=(a為長半軸,c為半焦距)上.
(1)求橢圓的標(biāo)準(zhǔn)方程;
(2)求以O(shè)M為直徑且被直線3x-4y-5=0截得的弦長為2的圓的方程;
(3)設(shè)F是橢圓的右焦點(diǎn),過點(diǎn)F作OM的垂線與以O(shè)M為直徑的圓交于點(diǎn)N,求證:線段ON的長為定值,并求出這個(gè)定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在平面直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),A(-2,0),B(2,0),點(diǎn)P為動(dòng)點(diǎn),且直線AP與直線BP的斜率之積為-.
(1)求動(dòng)點(diǎn)P的軌跡C的方程;
(2)過點(diǎn)D(1,0)的直線l交軌跡C于不同的兩點(diǎn)M,N,△MON的面積是否存在最大值?若存在,求出△MON的面積的最大值及相應(yīng)的直線方程;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓C的焦點(diǎn)在軸上,焦距為2,直線n:x-y-1=0與橢圓C交于A、B兩點(diǎn),F(xiàn)1是左焦點(diǎn),且,則橢圓C的標(biāo)準(zhǔn)方程是        

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)A(x1y1),B(x2y2)是橢圓C=1(a>b>0)上兩點(diǎn),已知mn,若m·n=0且橢圓的離心率e,短軸長為2,O為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)試問△AOB的面積是否為定值?如果是,請給予證明;如果不是,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案