【題目】已知函數(shù) (其中a為非零實(shí)數(shù)),且方程 有且僅有一個(gè)實(shí)數(shù)根. (Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)證明:函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞減.

【答案】解:(Ⅰ)由 ,得 ,

又a≠0,即二次方程ax2﹣4x+4﹣a=0有且僅有一個(gè)實(shí)數(shù)根(且該實(shí)數(shù)根非零),

所以△=(﹣4)2﹣4a(4﹣a)=0,

解得a=2(此時(shí)實(shí)數(shù)根非零).

(Ⅱ)由(Ⅰ)得:函數(shù)解析式

任取0<x1<x2,

則f(x1)﹣f(x2

=

= ,

∵0<x1<x2,∴x2﹣x1>0,2+x1x2>0,x1x2>0,

∴f(x1)﹣f(x2)>0,即f(x1)>f(x2),

∴函數(shù)f(x)在區(qū)間(0,+∞)上單調(diào)遞減.


【解析】(Ⅰ)根據(jù)二次函數(shù)的性質(zhì)得到△=0,求出a的值即可;(Ⅱ)根據(jù)函數(shù)單調(diào)性的定義證明函數(shù)的單調(diào)性即可.
【考點(diǎn)精析】本題主要考查了函數(shù)單調(diào)性的判斷方法的相關(guān)知識(shí)點(diǎn),需要掌握單調(diào)性的判定法:①設(shè)x1,x2是所研究區(qū)間內(nèi)任兩個(gè)自變量,且x1<x2;②判定f(x1)與f(x2)的大。虎圩鞑畋容^或作商比較才能正確解答此題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】(題類A)以橢圓 +y2=1(a>1)短軸端點(diǎn)A(0,1)為直角頂點(diǎn),作橢圓內(nèi)接等腰直角三角形,試判斷并推證能作出多少個(gè)符合條件的三角形.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線關(guān)于x軸對(duì)稱,它的頂點(diǎn)在坐標(biāo)原點(diǎn),點(diǎn)P(1,2),A(x1 , y1),B(x2 , y2)均在拋物線上.

(1)求該拋物線方程;
(2)若AB的中點(diǎn)坐標(biāo)為(1,﹣1),求直線AB方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知a為實(shí)數(shù),函數(shù)f(x)=ex﹣2x+2a,x∈R.
(1)求函數(shù)f(x)的極值;
(2)求證:當(dāng)a>ln2﹣1且x>0時(shí),ex>2x﹣2a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知過點(diǎn)P(m,n)的直線l與直線l0:x+2y+4=0垂直. (Ⅰ) 若 ,且點(diǎn)P在函數(shù) 的圖象上,求直線l的一般式方程;
(Ⅱ) 若點(diǎn)P(m,n)在直線l0上,判斷直線mx+(n﹣1)y+n+5=0是否經(jīng)過定點(diǎn)?若是,求出該定點(diǎn)的坐標(biāo);否則,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù)f(x)=alnx+ +x(a>0).若曲線y=f(x)在點(diǎn)(1,f(1))處的切線與直線x﹣2y=0垂直, (Ⅰ)求實(shí)數(shù)a的值;
(Ⅱ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】閱讀如圖所示的程序框圖,則輸出的S=(
A.14
B.30
C.20
D.55

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓C: (a>b>0)經(jīng)過點(diǎn)(1, ),且離心率等于 . (Ⅰ)求橢圓C的方程;
(Ⅱ)過點(diǎn)P(2,0)作直線PA,PB交橢圓于A,B兩點(diǎn),且滿足PA⊥PB,試判斷直線AB是否過定點(diǎn),若過定點(diǎn)求出點(diǎn)坐標(biāo),若不過定點(diǎn)請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知△ABC的三個(gè)頂點(diǎn)是A(4,0),B(6,7),C(0,3).
(1)求過點(diǎn)A與BC平行的直線方程.
(2)求過點(diǎn)B,并且在兩個(gè)坐標(biāo)軸上截距相等的直線方程.

查看答案和解析>>

同步練習(xí)冊答案