已知函數(shù),且任意的

(1)求、的值;
(2)試猜想的解析式,并用數(shù)學(xué)歸納法給出證明.
(1)(2)

試題分析:(1)

                                     4分(2)猜想:                                                  6分
用數(shù)學(xué)歸納法證明如下:
①當(dāng)n=1時(shí),,∴猜想正確;                                         7分
②假設(shè)當(dāng)
那么當(dāng)
所以,當(dāng)時(shí),猜想正確;
由①②知,對(duì)正確.                                                13分
點(diǎn)評(píng):應(yīng)用數(shù)學(xué)歸納法解決問(wèn)題時(shí),要注意從n=k到n=k+1推導(dǎo)時(shí),一定要用上歸納假設(shè).
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

有一塊邊長(zhǎng)為36的正三角形鐵皮,從它的三個(gè)角剪下三個(gè)全等的四邊形后做成一個(gè)無(wú)蓋的正三棱柱容器,如左下圖示,則這個(gè)容器的最大容積是(   )
A.288B.292C.864D.876

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù)和函數(shù)的圖像關(guān)于直線對(duì)稱,
則函數(shù)的解析式為

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

對(duì)于定義在實(shí)數(shù)集上的兩個(gè)函數(shù),若存在一次函數(shù)使得,對(duì)任意的,都有,則把函數(shù)的圖像叫函數(shù)的“分界線”,F(xiàn)已知為自然對(duì)數(shù)的底數(shù)),
(1)求的遞增區(qū)間;
(2)當(dāng)時(shí),函數(shù)是否存在過(guò)點(diǎn)的“分界線”?若存在,求出函數(shù)的解析式,若不存在,請(qǐng)說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

,…, .若,則的值為      .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

兩縣城A和B相距20km,現(xiàn)計(jì)劃在兩縣城外,以AB為直徑的半圓弧AB上選擇一點(diǎn)C建造垃圾處理廠,其對(duì)城市的影響度與所選地點(diǎn)到城市的距離有關(guān),對(duì)城A和城B的總影響度為對(duì)城A與城B的影響度之和,記C點(diǎn)到城A的距離為,建在C處的垃圾處理廠對(duì)城A和城B的總影響度為,統(tǒng)計(jì)調(diào)查表明:垃圾處理廠對(duì)城A的影響度與所選地點(diǎn)到城A的距離的平方成反比,比例系數(shù)為4;對(duì)城B的影響度與所選地點(diǎn)到城B的距離的平方成反比,比例系數(shù)為k,當(dāng)垃圾處理廠建在AB的中點(diǎn)時(shí),對(duì)A和城B的總影響度為0.065。



(1)將表示成的函數(shù);
(2)判斷弧AB上是否存在一點(diǎn),使建在此處的垃圾處理廠對(duì)城A和城B的總影響度最小?若存在,求出該點(diǎn)到城A的距離;若不存在,說(shuō)明理由。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知在映射的作用下的像是,求作用下的像和作用下的原像.(12分)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)
(Ⅰ)求在點(diǎn)處的切線方程;
(Ⅱ)若存在,滿足成立,求的取值范圍;
(Ⅲ)當(dāng)時(shí),恒成立,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知函數(shù).關(guān)于的方程有解,則實(shí)數(shù)的取值范圍是      _____    .

查看答案和解析>>

同步練習(xí)冊(cè)答案