已知等差數(shù)列{an}滿足:a5=9,a2+a6=14.
(1)求{an}的通項(xiàng)公式;
(2)若bn=
1anan+1
,求數(shù)列{bn}的前n項(xiàng)和Sn
分析:(1)由等差數(shù)列的條件求出首項(xiàng)和公差,即可求{an}的通項(xiàng)公式;
(2)求出數(shù)列{bn}的通項(xiàng)公式,然后利用裂項(xiàng)法求,求數(shù)列{bn}的前n項(xiàng)和Sn
解答:解:(1)由a5=9,a2+a6=14.
a5=a1+4d=9
2a1+6d=14
,解得
a1=1
d=2
,
∴an=1+(n-1)×2=2n-1.
(2)∵bn=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,
sn=
1
2
[(1-
1
3
)+(
1
3
-
1
5
)+(
1
5
-
1
7
)+…+(
1
2n-1
-
1
2n+1
)]

=
1
2
[1-
1
2n+1
]
=
1
2
2n
2n+1
=
n
2n+1
點(diǎn)評(píng):本題主要考查等差數(shù)列的通項(xiàng)公式和數(shù)列的求和問題,利用裂項(xiàng)法是解決本題的關(guān)鍵,考查學(xué)生的運(yùn)算能力.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an},公差d不為零,a1=1,且a2,a5,a14成等比數(shù)列;
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)數(shù)列{bn}滿足bn=an3n-1,求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}中:a3+a5+a7=9,則a5=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足:a5=11,a2+a6=18.
(1)求{an}的通項(xiàng)公式;
(2)若bn=an+q an(q>0),求數(shù)列{bn}的前n項(xiàng)和Sn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知等差數(shù)列{an}滿足a2=0,a6+a8=-10
(1)求數(shù)列{an}的通項(xiàng)公式;     
(2)求數(shù)列{|an|}的前n項(xiàng)和;
(3)求數(shù)列{
an2n-1
}的前n項(xiàng)和.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知等差數(shù)列{an}中,a4a6=-4,a2+a8=0,n∈N*
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若{an}為遞增數(shù)列,請(qǐng)根據(jù)如圖的程序框圖,求輸出框中S的值(要求寫出解答過程).

查看答案和解析>>

同步練習(xí)冊(cè)答案