已知函數(shù)在處有極值,則函數(shù)的圖象可能是( )
A. B. C. D.
A
【解析】
試題分析:因?yàn)椋?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/2013070212075726939682/SYS201307021208135506184429_DA.files/image001.png">,令=是減函數(shù),。
圖象B中,在處,和絕對(duì)值為正且都處于減小過(guò)程中,兩都相乘后的函數(shù)f(x)為正且是處于減小過(guò)程,不可能存在極值;
圖象C中,在處,為負(fù)且絕對(duì)值持續(xù)減小,而也是持續(xù)減小,相乘后f(x)絕對(duì)值仍為負(fù)且繼續(xù)減小,不存在極值;
圖象D中,在處,由負(fù)變正而持續(xù)減小,f(x)將由負(fù)變正,雖不能肯定之后函數(shù)走勢(shì),但該處不可能是極值點(diǎn);
圖象A所示情形,在處,為負(fù)但絕對(duì)值繼續(xù)增加,而是持續(xù)減小,兩者相乘后f(x)保持為負(fù)但絕對(duì)值可能不會(huì)再增大,有可能存在極值。
考點(diǎn):本題主要考查函數(shù)極值存在的條件,函數(shù)的圖象。
點(diǎn)評(píng):中檔題,結(jié)合函數(shù)圖象,定性估計(jì)函數(shù)極值的情況,具有“猜測(cè)”成分。
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)在處有極值.
(Ⅰ)求實(shí)數(shù)值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)令,若曲線在處的切線與兩坐標(biāo)軸分別交于,兩點(diǎn)(為坐標(biāo)原點(diǎn)),求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
已知函數(shù)在處有極值.
(Ⅰ)求,的值;
(Ⅱ)判斷函數(shù)的單調(diào)性并求出單調(diào)區(qū)間.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年河北省高三第三次模擬考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
(本小題滿分12分) 已知函數(shù)在處有極值.
(Ⅰ)求實(shí)數(shù)值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間;
(Ⅲ)試問(wèn)是否存在實(shí)數(shù),使得不等式對(duì)任意 及
恒成立?若存在,求出的取值范圍;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆北京西城(南區(qū))高二下學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:解答題
已知函數(shù)在處有極值。
(Ⅰ)求實(shí)數(shù)的值;
(Ⅱ)求函數(shù)的單調(diào)區(qū)間。
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2013屆廣東省高二下學(xué)期第一次階段考試?yán)砜茢?shù)學(xué) 題型:解答題
(本小題滿分14分)已知函數(shù)在處有極值.
(1)求常數(shù)、;
(2)求曲線與軸所包圍的面積。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com